Расчетная длина плиты перекрытия в расчетной схеме


Компоновка плиты перекрытия – ПК 56-15. Конструкция пола. Расчетная схема и расчетное сечение плиты. Назначение классов бетона и арматуры

2. Расчетно-конструктивный раздел

2.1Компоновка плиты перекрытия – ПК 56-15.

Перекрытие здания с каркасом по серии 1.020-1/83

При шаге колонн 6м конструктивная длина плиты Lk=L-b-2*bшв

Lk=6000-310-2*20=5650мм

2.2 Конструкция пола.

          1.Линолеум поливинилхлоридный на тканевой основе, р=1800кг/м3 t=5мм;

          2.Прослойка из холодной мастики р=1000кг/м3, t=15мм;

          3. Цементно-песчаная стяжка р=1800кг/м3, t=40мм;

          4. Плита перекрытия р=2500кг/м3, t=220мм.

2.3 Расчетная схема и расчетное сечение плиты.

Расчетный пролет для каркасного здания по серии 1.020-1/83.

          L0=Lk-c=5650-107,5=5542,5мм

с – опирание плиты на ригель = bk/2-(155+20)=565/2-175=107,5мм

lk – конструктивная длина плиты

Шаг пустот 185мм. Ширина ребер между пустотами 185-159=26мм.

При 7 пустотах число ребер равно 6.

Ширина крайних ребер = (1490-6*26-7*159)/2=110,5мм

          Расстояние от грани плиты до оси крайних пустот 110,5+159/2=190мм.

Расчетное сечение плиты при расчете по первой группе предельных состояний принимаем как тавровая балка h=220мм.

Расчетная ширина верхней полки при боковых подрезках 15мм

bf=bk-2*15=1460

hf=(h-d)/2=(220-159)/2=30,5мм

Расчетная ширина ребра b=bf-7*d=1460-7*159=347мм.

2.4 Нагрузка на плиту.

          Нагрузка на плиту складывается из постоянной нагрузки – собственного веса элементов и временной нагрузки, действующей на перекрытие. Для учета нагрузки от перегородок определим эквивалентную нагрузку от веса перегородки, расположенной вдоль плиты.

Подсчет нагрузок на 1м2 перекрытия приведен в таблице 1.

Наименование

Подсчет

Нормативная,

кПа

Коэф. надежности

по нагрузке

γf’

Расчетная,

кПа

I. Постоянные:

1. Линолеум ρ=1800кг/м3,t=0,005м

18*0,005

0,09

1,2

0,108

2. Мастика р=1000кг/м3, t=0,015м

10*0,015

0,15

1,3

0,195

3.Ц-п стяжка ρ=1800кг/м3,t=0,04м

18*0,04

0,72

1,3

0,936

3. Железобетонная многопустотная плита, t=220мм

-

3,2

1,1

3,52

Итого постоянные

gn=5,66

gp=6,559

II. Временные:

Полное значение

1,5

1,2

1,8

Итого временные

vn= 1.5

vp=1,8

Всего:

7,16

8,359

g=gp*b*γn=6,559*1,5*0.95=9,35кН/м

v=vp*b* γn=1,8*1.5*0.95=2,565 кН/м

Полная нагрузка q=g+v=9,35+2,565=11,915кН/м

2.5 Статический расчет плиты.

Mmax=q*l2/8=11,915*5.862/8=51,14кН*м

Qmax=q*l0/2=11,915*5.86/2=34,91кН

2.6 Назначение классов бетона и арматуры.

Принимаем для плиты с предварительным напряжением.

          При арматуре класса А-IV,В15, расчетное сопротивление бетона при γв2;

          Rb=7.7 МПа, Rbt=0.67 МПа.

Рабочая продольная арматура класса А-IV.

          Rsn(нормативное сопротивление)=590 МПа

          Rs(расчетное сопротивление)=510 МПа

          Вр-I- поперечная конструктивная арматура

          Rsn=490 МПа

          Rs=410 МПа

          Rsw=270 МПа

          Рабочую продольную арматуру натягивают на упоры формы электротермическим способом, а обжатие бетона производится усилием напрягаемой арматуры при достижении прочности Rbp=0,5*Rbn

          Rbn=0,5*11=5,5 МПа – передаточная прочность бетона.

          Предварительное напряжение арматуры принимается:

          σsp=0,6* Rsn=0,6*590=354 МПа.

          σsp+Р ≤ Rs,ser

          P=30+360/l=30+360/6=90 МПа

          σsp+Р=354+90=444 МПа < Rs,ser=590 МПа

          σsp-Р=354-90=264 МПа > 0,3*Rs,ser=0,3*590 =177 МПа     

∆γsp=0,5*Р/ σsp*(1+1/√np)

2h=2*220=440 мм

При установке через 2 пустоты это расстояние будет = 2*185=370

vunivere.ru

Расчет монолитной плиты перекрытия пример - Всё о бетоне

Частные строители в процессе возведения своего дома часто сталкиваются с вопросом: когда необходимо произвести расчет монолитной железобетонной плиты перекрытия, лежащей на 4 несущих стенах, а значит, опертой по контуру? Так, при расчете монолитной плиты, имеющей квадратную форму, можно взять в расчет следующие данные. Кирпичные стены, возведенные из полнотелого кирпича, будут иметь толщину 510 мм. Такие стены образуют замкнутое пространство, размеры которого равны 5х5 м, на основания стен будет опираться железобетонное изделие, а вот опорные площадки по ширине будут равны 250 мм. Так, размер монолитного перекрытия будет равен 5.5х5.5 м. Расчетные пролеты l1 = l2 = 5 м.

Схема армирования монолитного перекрытия.

Кроме собственного веса, который прямо зависит от высоты плиты монолитного типа, изделие должно выдерживать еще некоторую расчетную нагрузку.

Схема монолитного перекрытия по профнастилу.

Отлично, когда данная нагрузка уже известна заранее. Например, по плите, высота которой равна 15 сантиметрам, будет производиться выравнивающая стяжка на основе цемента, толщина стяжки при этом равна 5 сантиметрам, на поверхность стяжки будет укладываться ламинат, его толщина равна 8 миллиметрам, а финишное напольное покрытие будет удерживать мебель, расставленную вдоль стен. Общий вес мебели при этом равен 2000 килограммов вместе со всем содержимым. Предполагается также, что помещение иногда будет умещать стол, вес которого равен 200 кг (вместе с закуской и выпивкой). Стол будет умещать 10 человек, общий вес которых равен 1200 кг, включая стулья. Но такое предусмотреть чрезвычайно сложно, поэтому в процессе расчетов используют статистические данные и теорию вероятности. Как правило, расчет плиты монолитного типа жилого дома производят на распределенную нагрузку по формуле qв = 400 кг/кв.м. Данная нагрузка предполагает стяжку, мебель, напольное покрытие, людей и прочее.

Эта нагрузка условно может считаться временной, т. к. после строительства могут осуществляться перепланировки, ремонты и прочее, при этом одна из частей нагрузки считается длительной, другая — кратковременной. По той причине, что соотношения кратковременной и длительной нагрузок неизвестны, для упрощения процесса расчетов можно считать всю нагрузку временной.

Добавка в бетон для гидроизоляции. Монтаж сборно монолитного перекрытия. Цементный раствор: пропорции. Подробнее>>

Определение параметров плиты

Схема сборной плиты перекрытия.

По причине, что высота монолитной плиты остается неизвестной, ее можно принять за h, этот показатель будет равен 15 см, в этом случае нагрузка от своего веса плиты перекрытия будет приблизительно равна 375 кг/кв.м = qп = 0.15х2500. Приблизителен этот показатель по той причине, что точный вес 1 квадратного метра плиты будет зависеть не только от диаметра и количества примененной арматуры, но и от породы и размеров мелкого и крупного наполнителей, которые входят в состав бетона. Будут иметь значение и качество уплотнения, а также другие факторы. Уровень данной нагрузки будет постоянным, изменить его смогут лишь антигравитационные технологии, но таковых на сегодняшний день нет. Таким образом можно определить суммарную распределенную нагрузку, оказываемую на плиту. Расчет: q = qп + qв = 375 +400 = 775 кг/м2.

Схема монолитной плиты перекрытия.

В процессе расчета следует взять во внимание, что для плиты перекрытия будет использован бетон, который относится к классу В20. Этот материал обладает расчетным сопротивлением сжатию Rb = 11.5 МПа или 117 кгс/см2. Будет применена и арматура, относящаяся к классу AIII. Ее расчетное сопротивление растяжению равно Rs = 355 МПа или 3600 кгс/см2.

При определении максимального уровня изгибающего момента следует учесть, что в том случае, если бы изделие в данном примере опиралось лишь на пару стен, то его можно было бы рассмотреть в качестве балки на 2-х шарнирных опорах (ширина опорных площадок на данный момент не учитывается), при всем при этом ширина балки принимается как b = 1 м, что необходимо для удобства производимых расчетов.

Расчет максимального изгибающего момента

Схема расчета монолитного перекрытия.

В вышеописанном случае изделие опирается на все стены, а это означает, что рассматривать лишь поперечное сечение балки по отношению к оси х будет недостаточно, так как можно рассматривать плиту, которую отражает пример, так же как балку по отношению к оси z. Таким образом, растягивающие и сжимающие напряжения окажутся не в единой плоскости, нормальной к х, а сразу в 2-х плоскостях. Если производить расчет балки с шарнирными опорами с пролетом l1 по отношению к оси х, тогда получится, что на балку будет действовать изгибающий момент m1 = q1l12/8. При всем при этом на балку с пролетом l2 будет действовать такой же момент m2, т. к. пролеты, которые отображает пример, равны. Однако расчетная нагрузка одна: q = q1 + q2, а если плита перекрытия имеет квадратную форму, то можно допустить, что: q1 = q2 = 0.5q, тогда m1 = m2 = q1l12/8 = ql12/16 = ql22/16. Это значит, что арматура, которая укладывается параллельно оси х, и арматура, укладываемая параллельно z, может быть рассчитана на идентичный изгибающий момент, при этом момент окажется в 2 раза меньше, чем для той плиты, которая опирается только на 2 стены.

Схема кровли профнастилом.

Так, уровень максимального расчета изгибающего момента окажется равен: Ма = 775 х 52/16 = 1219.94 кгс.м. Но такое значение может быть использовано лишь при расчете арматуры. По той причине что на поверхность бетона станет действовать сжимающие напряжения в двух взаимно перпендикулярных плоскостях, то значение изгибающего момента, применимое для бетона, следующее: Мб = (m12 + m22)0.5 = Mа√2 = 1219.94.1.4142 = 1725.25 кгс.м. Так как в процессе расчета, который предполагает данный пример, необходимо какое-то одно значение момента, можно взять во внимание среднее расчетное значение между моментом для бетона и арматуры: М = (Ма + Мб)/2 = 1.207Ма = 1472.6 кгс.м. Следует брать во внимание, что при отрицании такого предположения можно рассчитать арматуру по моменту, который действует на бетон.

Читайте также:  Пропорции раствора для штукатурки

Сечение арматуры

Схема перекрытия по профлисту.

Данный пример расчета монолитной плиты предполагает определение сечения арматуры в продольном и в поперечном направлениях. В момент использования какой бы то ни было методики следует помнить о высоте расположения арматуры, которая может быть разной. Так, для арматуры, которая располагается параллельно оси х, предварительно можно принять h01 = 13 см, а вот арматура, располагаемая параллельно оси z, предполагает принятие h02 = 11 см. Такой вариант верен, так как диаметр арматуры пока неизвестен. Расчет по старой методике проиллюстрирован в ИЗОБРАЖЕНИИ 2. А вот используя вспомогательную таблицу, которую вы увидите на ИЗОБРАЖЕНИИ 3, можно найти в процессе расчета: η1 = 0.961 и ξ1 = 0.077. η2 = 0.945 и ξ2 = 0.11.

Схема примера несъемной опалубки.

В таблице указаны данные, необходимые в ходе расчета изгибаемого элемента прямоугольного сечения. Элементы при этом армированы одиночной арматурой. А как производится расчет требуемой площади сечения арматуры, можно увидеть на ИЗОБРАЖЕНИИ 4. Если для унификации принять продольную, а также поперечную арматуру, диаметр которой будет равен 10 мм, пересчитав показатель сечения поперечной арматуры, приняв во внимание h02 = 12 см, мы получим то, что вы сможете увидеть, взглянув на ИЗОБРАЖЕНИЕ 5. Таким образом, для армирования одного погонного метра можно применить 5 стержней поперечной арматуры и столько же продольной. В конечном итоге получится сетка, которая имеет ячейки 200х200 мм. Арматура для одного погонного метра будет иметь площадь сечения, равную 3.93х2 = 7.86 см2. Это один пример подбора сечения арматуры, а вот расчет удобно будет производить, используя ИЗОБРАЖЕНИЕ 6.

Все изделие предполагает использование 50 стержней, длина которых может варьироваться в пределах от 5.2 до 5.4 метра. Учитывая то, что в верхней части сечение арматуры имеет хороший запас, можно уменьшить число стержней до 4, которые расположены в нижнем слое, площадь сечения арматуры в этом случае окажется равна 3.14 см2 либо 15.7 см2 по длине плиты.

Основные параметры

Схема расчета бетона на фундамент.

Вышеприведенный расчет был простым, но, чтобы уменьшить количество арматуры, его следует усложнить, т. к максимальный изгибающий момент будет действовать лишь в центральной части плиты. Момент в местах приближения к опорам-стенам стремится к нулю, следовательно, остальные метры, исключая центральные, можно армировать, используя арматуру, которая имеет меньший диаметр. А вот размер ячеек для арматуры, которая имеет диаметр, равный 10 мм, увеличивать не следует, так как распределенная нагрузка на плиту перекрытия считается условной.

Следует помнить, что существующие способы расчета монолитной плиты перекрытия, которая опирается по контуру, в условиях панельных построек предполагают применение дополнительного коэффициента, который будет учитывать пространственную работу изделия, ведь воздействие нагрузки заставит плиту прогибаться, что предполагает концентрированное применение арматуры в центральной части плиты. Использование подобного коэффициента позволяет максимум на 10 процентов уменьшить сечение арматуры. Но для железобетонных плит, которые изготавливаются не в стенах завода, а в условиях стройплощадки, применение дополнительного коэффициента не обязательно. Прежде всего это обусловлено необходимостью дополнительных расчетов на раскрытие возможных трещин, на прогиб, на уровень минимального армирования. Более того, чем большее количество арматуры имеет плита, тем меньше окажется прогиб в центре и тем проще его можно устранить либо замаскировать в процессе финишной отделки.

Так, если использовать рекомендации, которые предполагают расчет сборной сплошной плиты перекрытия общественных и жилых зданий, тогда площадь сечения арматуры, которая принадлежит к нижнему слою, по длине плиты окажется равна примерно А01 = 9.5 см2 , что примерно в 1.6 раза меньше полученного в данном расчете результата, но в этом случае необходимо помнить, что максимальная концентрация арматуры должна оказаться посредине пролета, поэтому разделить полученную цифру на 5 м длины не допустимо. Однако это значение площади сечения позволяет приблизительно оценить, какое количество арматуры можно сэкономить после проведения расчетов.

Расчет прямоугольной плиты

Схема монолитного перекрытия своими руками.

Данный пример для упрощения расчетов предполагает использование всех параметров, кроме ширины и длины помещения, таких же как в первом примере. Бесспорно, моменты, которые действуют относительно оси х и z в прямоугольных плитах перекрытия, не равны. И чем больше окажется разница между шириной и длиной помещения, тем больше плита перекрытия станет напоминать балку, размещенную на шарнирных опорах, а в момент достижения определенного значения уровень влияния поперечной арматуры будет почти неизменным.

Читайте также:  Расчет параметров плиты перекрытия

Существующие экспериментальные данные и опыт, полученный при проектировании, показывают, что при соотношении λ = l2 / l1 > 3 показатель поперечного момента окажется в 5 раз меньше продольного. А в случае когда λ ≤ 3, определить соотношение моментов допустимо, используя эмпирический график, который проиллюстрирован на ИЗОБРАЖЕНИИ 7, где можно проследить зависимость моментов от λ. Под единицей подразумеваются плиты монолитного типа с контурным шарнирным опиранием, двойка предполагает плиты с трехсторонним шарнирным опиранием. График изображает пунктир, который показывает допустимые нижние пределы в процессе подбора арматуры, а в скобках указаны значения λ, что применимо для плит с трехсторонним опиранием. При этом λ < 0,5 m = λ, нижние пределы m = λ/2. Но в этом случае интерес представляет лишь кривая №1, которая отображает теоретические значения. На ней можно видеть подтверждение предположения, что уровень соотношения моментов равен 1 для плиты квадратной формы, по ней можно определить уровень моментов для остальных соотношений ширины и длины.

Формулы и коэффициенты

Схема монтажа перекрытия.

Так, для расчета плиты перекрытия монолитного типа используется помещение, которое имеет длину, равную 8 м, и ширину, равную 5 м. Следовательно, расчетные пролеты окажутся равны l2 = 8 м и l1 = 5 м. При этом λ = 8/5 = 1.6, уровень соотношения моментов равен m2/m1 = 0.49, а вот m2 = 0.49m1. По причине, что общий момент равняется M = m1 + m2, то M = m1 +0.49m1 или m1 = M/1.49, общий момент следует определять по короткой стороне, что обусловлено разумностью решения: Ма = ql12/8 = 775 х 52 / 8 = 2421.875 кгс.м. Дальнейший расчет приведен на ИЗОБРАЖЕНИИ 8.

Так, для армирования одного погонного метра плиты перекрытия следует применить 5 стержней арматуры, диаметр арматуры в этом случае будет равен 10 мм, при этом длина может варьироваться до 5.4 м, а начальный предел может быть равен 5.2 м. Показатель площади сечения продольной арматуры для одного погонного метра равняется 3.93 см2. Поперечное армирование допускает использование 4 стержней. Диаметр арматуры плиты при этом равен 8 мм, максимальная длина равна 8.4 м, при начальном значении в 8.2 м. Сечение поперечной арматуры имеет площадь, равную 2.01 см2, что необходимо для одного погонного метра.

Стоит помнить, что приведенный расчет плиты перекрытия можно считать упрощенным вариантом. При желании, уменьшив сечение используемой арматуры и изменив класс бетона либо и вовсе высоту плиты, можно уменьшить нагрузку, рассмотрев разные варианты загрузки плиты. Вычисления позволят понять, даст ли это какой-то эффект.

Схема строительства дома.

Так, для простоты расчета плиты перекрытия в примере не было учтено влияние площадок, выступающих в качестве опор, а вот если на данные участки сверху станут опираться стены, приближая таким образом плиту к защемлению, тогда при более значительной массе стен данная нагрузка должна быть учтена, это применимо в случае, когда ширина данных опорных участков окажется больше 1/2 ширины стены. В случае когда показатель ширины опорных участков окажется меньше или будет равен 1/2 ширине стены, тогда будет необходим дополнительный расчет стены на прочность. Но даже в этом случае вероятность, что на опорные участки не станет передаваться нагрузка от массы стены, окажется велика.

Пример варианта при конкретной ширине плиты

Возьмем за основу ширину опорных областей плиты, равную 370 мм, что применимо для кирпичных стен, имеющих ширину в 510 мм. Этот вариант расчета предполагает высокую вероятность передачи на опорную область плиты нагрузки от стены. Так, если плита будет удерживать стены, ширина которых равна 510 мм, а высота — 2.8 м, а на стены станет опираться плита следующего этажа, сосредоточенная постоянная нагрузка окажется равна.

Более правильным в этом случае было бы брать во внимание в процессе расчета плиту перекрытия в качестве шарнирно опертого ригеля с консолями, а уровень сосредоточенной нагрузки — в качестве неравномерно распределенной нагрузки на консоли. Кроме того, чем ближе к краю, тем нагрузка была бы больше, но для упрощения можно предположить, что данная нагрузка равномерно распределяется на консолях, составляя 3199.6/0.37 = 8647, 56 кг/м. Уровень момента на шарнирных опорах от подобной нагрузки будет равен 591.926 кгс.м.

Это значит, что:

Данный вариант расчета загружения следует рассматривать вместе с вариантом, который предполагает, что плита перекрытия уже имеется, а стены — нет, что исключает временную нагрузку на плиту.

1pobetonu.ru

Расчет плиты перекрытия: считаем нагрузку и подбираем материалы для строительства

Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить важные параметры, как сечение арматуры и площадь нагрузки.

Поэтому в этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!

Шаг 1. Составляем схему перекрытия

Давайте начнем с того, что монолитная железобетонная плита перекрытия – это конструкция, которая лежит на четырех несущих стенах, т.е. опирается по своему контуру.

И не всегда плита перекрытия представляет собой правильный четырехугольник. Тем более, что сегодня проекты жилых домов отличаются вычурностью и многообразием сложных форм.

В этой статье мы научим вас рассчитывать 1 метр плиты, а общую нагрузку вам нужно будет вычислять по математическим формулам площадей. Если совсем сложно – разбейте площадь плиты на отдельные геометрические фигуры, рассчитайте нагрузку каждой, затем просто суммируйте.

Шаг 2. Проектируем геометрию плиты

Теперь рассмотрим такие основные понятия, как физическая и проектная длина плиты. Т.е. физическая длина перекрытия может быть любой, а вот расчетная длина балки уже имеет другое значение. Ею называют минимальное расстояние между наиболее удаленными соседними стенами. По факту физическая длина плиты всегда длиннее, чем проектная длина.

Вот хороший видео-урок о том, как производится расчет монолитной плиты перекрытия:

Важный момент: несущий элемент плиты может быть как шарнирная бесконсольная балка, так и балка жесткого защемления на опорах. Мы будем приводить пример рассчета плиты на безконсольную балку, т.к. такая встречается чаще.

Чтобы рассчитать всю плиту перекрытия, нужно рассчитать ее один метр для начала. Профессиональные строители используют для этого специальную формулу, и приведет пример такого расчета. Так, высота плиты всегда значится как h, а ширина как b. Давайте рассчитаем плиту с такими параметрами: h=10 см, b=100 см. Для этом вам нужно будет познакомиться с такими формулами:

Дальше – по предложенным шагам.

Шаг 3. Рассчитываем нагрузку

Плиту перекрытия легче всего рассчитать, если она имеет квадратную форму и если вы знаете, какая нагрузка будет запланирована. При этом какая-то часть нагрузки будет считаться длительной, которую определяет количество мебели, техники и этажности, а другая – кратковременной, как строительное оборудование во время стройки.

Кроме того, плита перекрытия должна выдерживать и другого рода нагрузки, как статистические и динамические, при этом сосредоточенная нагрузка всегда измеряется в килограммах или в ньютонах (например, нужно будет ставить тяжелую мебель) и распределительная нагрузка, измеряемая в килограммах и силе. Конкретно сам расчет плиты перекрытия всегда нацелен на определение распределительный нагрузки.

Вот ценные рекомендации, какой должна быть нагрузка на плиту перекрытия в плане расчета на изгиб:

Второй немаловажный момент, который тоже нужно учитывать: на какие стены будет опираться монолитная плита перекрытия? На кирпичные, каменные, бетонные, пенобетонные, газобетонные или из шлакоблока? Вот почему так важно рассчитать плиту не только с позиции нагрузки на нее, но и с точки зрения ее собственного веса. Особенно, если ее устанавливают на недостаточно прочные материалы, как шлакоблок, газобетон, пенобетон или керамзитобетон.

Сам расчет плиты перекрытия, если мы говорим о жилом доме, всегда нацелен на нахождение распределительной нагрузки. Она рассчитывается по формуле: q1=400 кг/м². Но к этому значению добавьте вес самой плиты перекрытия, а это обычно 250 кг/м², а бетонная стяжка и черной и чистовой пол даст еще дополнительные 100 кг/м². Итого имеем 750 кг/м².

Учитывайте при этом, что изгибающее напряжение плиты, которая по своему контуру опирается на стены, всегда приходится на ее центр. Для пролета в 4 метра напряжение рассчитывается так:

l=4 м Мmax=(900х4²)/8=1800 кг/м

Итого: 1800 кг на 1 метр, именно такая нагрузка должна будет на плиту перекрытия.

Шаг 4. Подбираем класс бетона

Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению. Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.

Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты. Ведь здесь много зависит от таких факторов, как загрязненность и плотности замеса, способов уплотнения других различных технологических факторов, даже так называемой активности цемента.

При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры. Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура. Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы. Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.

Шаг 5. Подбираем сечение арматуры

Разрушение в плитах перекрытия происходит тогда, когда арматура достигает своего предела прочности при растяжении или текучести. Т.е. почти все зависит от нее. Второй момент, если прочность бетона уменьшается в 2 раза, тогда и несущая способность армирования плиты уменьшается с 90 на 82%. Поэтому доверимся формулам:

Происходит армирование при помощи обвязки арматуры из сварной сетки. Ваша главная задача – рассчитать процент армирования поперечного профиля продольными стержнями арматуры.

Как вы наверняка не раз замечали, самые распространенные ее виды сечения – это геометрические фигуры: форма круга, прямоугольника, трапеции. А расчет самой площади сечения происходит по двум противоположным углам, т.е. по диагонали. Кроме того, учитывайте, что определенную прочность плите перекрытия придает также дополнительное армирование:

Если рассчитывать арматуру по контуру, тогда вы должны выбрать определенную площадь и просчитывать ее последовательно. Далее, на самом объекте проще рассчитывать сечение, если взять ограниченной замкнутой объект, как прямоугольник, круг или эллипс и производить расчет в два этапа: с использованием формирования внешнего и внутреннего контура.

Например, если вы рассчитываете армирование прямоугольного монолитного перекрытия в форме прямоугольника, тогда нужно отметить первую точку в вершине одного из углов, затем отметить вторую и произвести расчет всей площади.

Согласно СНиПам 2.03.01-84 «Бетонные и железобетонные конструкции» сопротивление растягивающим усилиям в отношении арматуры А400 составляет Rs=3600 кгс/см², или 355 МПа, а вот для бетона класса B20 значение Rb=117кгс/см² или 11.5 МПа:

Согласно нашим вычислениям, для армирования 1 погонного метра понадобится 5 стержней с сечением 14 мм и с ячейкой 200 мм. Тогда площадь сечения арматуры будет равняться 7.69 см². Чтобы обеспечить надежность по поводу прогиба, высоту плиты завышают до 130-140 мм, тогда сечение арматуры составляет 4-5 стержней по 16 мм.

Итак, зная такие параметры, как необходимая марка бетона, тип и сечение арматуры, которые нужны для плиты перекрытия, вы можете быть уверены в ее надежности и качестве!

krovgid.com

Расчет и конструирование балочной плиты Расчетная схема

В балочных плитах, характеризуемых отношением l2 : l1 ≥ 2, пренебрегают (в виду малости) изгибом в продольном направлении. Поэтому расчетная схема плиты принимается в виде многопролетной неразрезной балки прямоугольного сечения размером b × h = 100 см × hf (рис. 2.2) с пролетами вдоль короткой стороны плиты и полной нагрузкой численно равной нагрузке на 1 м2 плиты. При этом все промежуточные пролеты плиты принимаются равными расстоянию в свету между гранями второстепенных балок, а крайние – расстоянию между осью площадки опирания на стену и гранью первой второстепенной балки (рис. 2.2 а).

Определение расчетных усилий

Расчет плиты (при равных или отличающихся не более чем на 20 % пролетах) производят с учетом перераспределения усилий по упрощенной схеме, принимая (рис. 2.2 в) значения моментов

– в крайних пролетах и на первых промежуточных опорах

– средних пролетах и на средних опорах

(– расчетные пролеты плиты по схеме рис. 2.2 а)

Расчет плиты на поперечные силы не производится, если удовлетворяется условие

Q ≤ 0,5 Rbt bh0

В балочных плитах, окаймленных по контуру балками, при соотношениях учитывается распор, путем снижения на 20 % моментов в средних пролетах и на средних опорах.

Подбор арматуры

Армирование балочных плит осуществляется рулонными сетками по двум схемам:

С целью максимальной унификации арматурных элементов подбор сеток производится на два следующих значения моментов:

сетка С – 1 – на момент ,

сетка С – 2 – на момент

Расчет требуемой площади арматуры ведется для плиты полосой равной 100 см, т. е. расчетным является прямоугольное сечение размером b × h = 100 × hf. Для каждого значения момента (М1, М2) расчет ведется в следующей последовательности

; (мм)

Примечание: необходимо строго соблюдать соответствующие размерности всех используемых параметров (М – Нмм; Rb – МПа (Н/мм2); b, h – в мм, получаемое значение As – мм2)

Для полученного значения αm находим ξ. Сравниваем ξ и ξR, где ξR – граничная высота сжатой зоны.

Если ξ ≤ ξR, то ; приξ  ξR следует увеличить размеры сечения или повысить класс бетона.

По сортаменту (Прил. 4) принимаем необходимую сетку с площадью сечения рабочей арматуры не менее требуемой по расчету и больше минимально допустимого значения (μ > μmin = 0,1 %).

Размещение арматуры показано на рис. 2.2 г, д.

2.3 Пример расчета плиты

Необходимо определить арматуру монолитной балочной плиты для перекрытия, компоновка которого приведена на рисунке 2.1, при следующих нагрузках:

Для определения расчетных пролетов плиты и второстепенных балок, а также нагрузок от их собственной массы производят предварительное назначение основных геометрических размеров сечений перекрытия:

мм

bpb = (0,3 ÷ 0,5) hpb = 0,5  400 = 200 мм

а) конструктивная схема

б) расчетная схема

в) эпюра моментов (условная, перераспределенная)

г) армирование плиты рулонными сетками с продольной рабочей арматурой

д) армирование плиты плоскими сетками с поперечной рабочей арматурой

Рисунок 2.2 – К расчету балочной плиты

мм

bmb = (0,4 ÷ 0,5) hmb = 0,5  600 = 300 мм

Вычисление расчетных пролетов плиты

l0f, 1 = lf 1 – 0,5 bpb – 250 + 0,5a = 2200 – 0,5 · 200 – 250 + 0,5 ·120 = 1910 мм

l0f, 2 = l0f, 3 = … = lf 2 – bpb = 2400 – 200 = 2200 мм;

Расчетный пролет плиты в перпендикулярном направлении

l0f, 2 = lр – bpb = 6000 – 300 = 5700 мм

Проверяем соотношение расчетных пролетов плиты

5700 : 2200 = 2,59 > 2, т.е. плита рассчитывается как балочная.

Примечание: для упрощения расчетов и возможности использования табличных значений целесообразно принимать пролеты плит и балок равными или отличающимися друг от друга не более 20 %.

Нагрузки на плиту перекрытия

Согласно рис. 2.2 расчетная схема плиты представляется многопролетной балкой шириной b = 100 см. Принимаем толщину плиты равной hpl = 70 мм (табл. 2.1) и расчет нагрузок представляем в таблице 2.3

Таблица 2.3

Нормативные и расчетные нагрузки на 1 м2 плиты

№ пп

Вид нагрузки

Подсчет

Нормативное значение, кН/м2

Коэффициент надежности γf

Расчетная нагрузка, кН/м2

1

Постоянная, gf

(толщина – 0,02 м,

0,02 · 1,0 · 1,0 · 18

0,36

1,2

0,43

объемная масса – 18 кН/м3)

(толщина – 0,05 м,

0,05 · 1,0 · 1,0 · 14

0,7

1,2

0,84

объемная масса – 14 кН/м3)

(толщина – 0,07 м,

0,07 · 1,0 · 1,0 · 25

1,75

1,1

1,92

объемная масса – 25 кН/м3)

Итого, постоянная gf

2,81

3,19

2

Временная, v(по заданию)

6,0

1,2

7,2

Полная, q=gf +v

qn= 8,81

q= 10,39

Определение усилий в расчетных сечениях

Момент от расчетных значений нагрузок

  1. в крайних пролетах и на первых промежуточных опорах

кНм

  1. в средних пролетах и на средних промежуточных опорах

кНм

Уточнение высоты сечения плиты

Целесообразно (по экономическим критериям), чтобы относительная высота сжатой зоны плиты ξ находилась в диапазоне значений 0,1 ÷ 0,2. Принимаем: бетон класса В15, тяжелый, естественного твердения, арматура класса В500 (Вр-I), ξ = 0,15. По СП [2] для принятых материалов находим нормируемые характеристики сопротивляемости и условий работы

Rb = 8,5 МПа; Rbt = 0,75 МПа; Еb = 23000 МПа; γb1 = 0,9

(с учетом длительности действия нагрузок, п. 5.1.10 [2])

Rs = 415 МПа; Rsw = 300 МПа; Еs = 2,0 · 105 МПа;

ξR = 0,652 (см. Приложение 2)

Для ξ = 0,15 находим αm = ξ (1 – 0,5 ξ) = 0,139. Тогда рабочая высота плиты

мм

hpl = h0f + a = 56,9 + 15 = 71,9 мм

Окончательно принимаем hpl = 7,0 см; h0 f = 5,5 см.

Примечание:

  1. при большом (> 10 %) отличии полученного и принятого ранее значений hpl требуется пересчитать величины нагрузок на перекрытие и значения расчетных моментов.

  2. Обращаем Ваше внимание на необходимость строгого соблюдения размерности всех входящих в расчетные формулы параметров.

Определение площади рабочей арматуры

Требуемая площадь рабочей арматуры определяется для расчетного прямоугольного сечения плиты с размерами hpl × b = 7 × 100 см. При этом площадь сечения стержней сетки непрерывного армирования С – 1 определяется для М = М1 = 3,14 кНм, а сетки С – 2 дополнительного армирования крайних пролетов и над первыми промежуточными второстепенными балками на величину М1 – М2 = 3,44 – 3,14 = 0,3 кНм

Для αm = 0,013 находим

studfiles.net

3. Проектирование ребристой плиты перекрытия

3.1. Конструктивное решение плиты перекрытия

Конструктивное решение плиты принимается в зависимости от принятой ширины плиты. Поперечное сечение плиты принимаем коробчатое (рис. 3.1).

Конструктивная ширина плиты принимается на 1см (0,01м) меньше номинальной ширины, равной по величине принятой ширине bпл = 1,25м. Высоту плиты принимаем равной 30см.

Толщину полки плиты принимаем равной 5см.

Толщину боковых продольных ребер плиты принимаем равной 7см. Уклон внутренних граней ребер плиты принимаем 1:10. Высоту утолщения нижних граней ребер плиты принимаем равной 9см.

Рис. 3.1. Конструктивное решение плиты перекрытия.

3.2. Сбор нагрузок на плиту перекрытия

Состав перекрытия указан на рис.3.2. Сбор нагрузок произведем в табличной форме (табл.3.1).

Рис. 3.2. Состав перекрытия.

Таблица 3.1

п/п

Вид нагрузки

Нормативная

нагрузка,

кН/м2

Коэфф. надежности по нагрузке

Расчетная нагрузка, кН/м2

1

Постоянная:

- бетонное покрытие (δ=30мм; ρ=24кН/м3)

0,72

1,3

0,94

- железобетонная плита

2,50

1,1

2,75

Итого постоянная g

3,22

-

3,69

2

Временная υ

4,00

1,2

4,80

Всего: (g + υ)

7,22

-

8,49

3.3. Определение конструктивной и расчетной длин плиты перекрытия

Конструктивная длина плиты определяется из условия ее опирания на ригели (рис.3.3). Для удобства монтажа между плитой и стенками ригелей с обеих сторон оставляется зазор по 10мм.

Рис. 3.3. Схема опирания плиты перекрытия на ригели.

Учитывая размер ригеля и величину номинальной длины плиты, определим конструктивную длину плиты по формуле:

,

где – номинальная длина плиты, принятая в разделе 2;= 5900мм;

мм.

По центру площадок опирания плиты на ригели действуют опорные реакции. Расстояние между этими реакциями – это расчетная длина плиты. Длина площадки опирания плиты на ригель равна 90мм. Следовательно, опорные реакции будут находиться в 45мм (90мм/2) от ее краев с обеих сторон. Расчетная длина плиты перекрытия будет определяться по формуле:

мм = 5,59м.

3.4. Определение расчетных усилий

Расчетные усилия в плите перекрытия определяются как для однопролетной шарнирно опертой балки по формулам:

;

,

где (g + υ) – полная расчетная нагрузка на плиту перекрытия; (g + υ) = 8,49кН/м2;

bпл – номинальная ширина плиты перекрытия; bпл = 1,25м;

lо – расчетная длина плиты перекрытия; lо = 5,59м;

γн – коэффициент надежности по назначению; γн = 0,95;

кН∙м;

кН.

3.5. Выбор материалов для плиты перекрытия

Для плиты перекрытия принимаем следующие материалы:

- бетон: класс В20; Rb = 11,5МПа.

- арматура: А-III; Rs = 355МПа.

3.6. Расчет продольного ребра плиты перекрытия по нормальному сечению (подбор продольной рабочей арматуры)

Схема армирования продольного ребра плиты перекрытия указана на рис.3.4.

Рис. 3.4. Схема армирования продольного ребра.

Коэффициент αm определяется по формуле:

,

где M – расчетный момент; M = 39,4кН∙м;

Rb – расчетное сопротивление бетона; Rb = 11,5МПа;

–ширина плиты поверху; = 121см;

ho – расстояние от оси арматуры до верха плиты (рабочая высота); ho = 27см;

γb1 – коэффициент, учитывающий длительность нагрузки; γb1 = 0,9;

.

По приложению 10 находим значения ζ и ξ, соответствующие найденному значению αm­ = 0,043 (или ближайшему по величине к найденному). Для αm = 0,039 значения этих величин будут равны: ζ = 0,98; ξ = 0,04. Для арматуры A-III ξR = 0,531. Проверяем выполнение условия ξ < ξR. Данное условие выполняется (0,039 < 0,531).

Находим требуемое сечение арматуры по формуле:

,

где Rs – расчетное сопротивление стали; Rs = 355МПа;

см2.

По приложению 12 подбираем ближайшее большее значение к требуемой площади для двух стержней. Принимаем арматуру 2ø18A-III с фактической площадью сечения As = 5,09см2.

studfiles.net

Расчет монолитной плиты перекрытия на примере квадратной и прямоугольной плит, опертых по контуру

При создании домов с индивидуальной планировкой дома, как правило, застройщики сталкиваются с большим неудобством использования заводских панелей. С одной стороны, их стандартные размеры и форма, с другой – внушительный вес, из-за которого не обойтись без привлечения подъемной строительной техники.

Для перекрытия домов с комнатами разного размера и конфигурации, включая овал и полукруг, идеальным решением являются монолитные ж/б плиты. Дело в том, что по сравнению с заводскими они требуют значительно меньших денежных вложений как на покупку необходимых материалов, так и на доставку и монтаж. К тому же у них значительно выше несущая способность, а бесшовная поверхность плит очень качественная.

Почему же при всех очевидных преимуществах не каждый прибегает к бетонированию перекрытия? Вряд ли людей отпугивают более длительные подготовительные работы, тем более что ни заказ арматуры, ни устройство опалубки сегодня не представляет никакой сложности. Проблема в другом – не каждый знает, как правильно выполнить расчет монолитной плиты перекрытия.

Преимущества устройства монолитного перекрытия ↑

Монолитные железобетонные перекрытия причисляют к категории самых надежных и универсальных стройматериалов.

Внимание!

Устраивать монолитное перекрытие в доме из газобетона можно исключительно после установки дополнительных опор из бетона или железа. Что же касается деревянных построек, то использование такого типа литья запрещено.

Для конструкций из легкого материала типа газобетона больше подходят сборно-монолитные перекрытия. Их выполняют из готовых блоков, к примеру, из керамзита, газобетона или других аналогичных материалов, после чего заливают бетоном. Получается, с одной стороны, легкая конструкция, а с другой – она служит монолитным армированным поясом для всего строения.

Виды ↑

По технологии устройства различают:

Обязательные условия получения качественного и надежного монолитное перекрытие по профнастилу:

Профилированные листы позволяют получить ребристое монолитное перекрытие, отличающееся большей надежностью. При этом значительно сокращаются затраты на бетон и стержни арматуры.

На заметку

Все монтажные работы выполняются по специально составленным технологическим картам на устройство монолитного перекрытия. Его еще называют основным технологическим документом, предназначенным как для строительных организаций и проектных бюро, так и для мастеров , непосредственно связанных с выполнением монолитных ж/б работ.

Расчет безбалочного перекрытия ↑

Перекрытие этого типа представляет из себя сплошную плиту. Опорой для нее служат колонны, которые могут иметь капители. Последние необходимы тогда, когда для создания требуемой жесткости прибегают к уменьшению расчетного пролета.

Полезно

Экспериментально было установлено, что для безбалочной плиты опасными нагрузками можно считать сплошную, оказывающую давление на всю площадь и полосовую, распределенную через весь пролет.

Расчет монолитной плиты, опертой по контуру ↑

Параметры монолитной плиты ↑

Понятно, что вес литой плиты напрямую зависит от ее высоты. Однако, помимо собственно веса она испытывает также определенную расчетную нагрузку, которая образуется в результате воздействия веса выравнивающей стяжки, финишного покрытия, мебели, находящихся в помещении людей и другое. Было бы наивно предположить, что кому-то удастся полностью предугадать возможные нагрузки или их комбинации, поэтому в расчетах прибегают к статистическим данным, основываясь на теории вероятностей. Таким путем получают величину распределенной нагрузки.

К примеру:

Здесь суммарная нагрузка составляет 775 кг на кв. м.

Одни из составляющих могут носить кратковременный характер, другие – более длительный. Чтобы не усложнять наши расчеты, условимся принимать распределительную нагрузку qв временной.

Как рассчитать наибольший изгибающий момент ↑

Это один из определяющих параметров при выборе сечения арматуры.

Напомним, что мы имеем дело с плитой, которая оперта по контуру, то есть, она будет выступать в роли балки не только относительно оси абсцисс, но и оси аппликат (z), и будет испытывать сжатие и растяжение в обеих плоскостях.

Как известно, изгибающий момент по отношению к оси абсцисс балки с опорой на две стены, имеющей пролет ln вычисляют по формуле mn = qnln2/8 (для удобства за ее ширину принят 1 м). Очевидно, что если пролеты равны, то равны и моменты.

Если учесть, что в случае квадратной плиты нагрузки q1 и q2 равны, возможно допустить, что они составляют половину расчетной нагрузки, обозначаемой q. Т. е.

Иначе говоря, можно допустить, что арматура, уложенная параллельно осям абсцисс и аппликат, рассчитывается на один и тот же изгибающий момент, который вдвое меньше, нежели тот же показатель для плиты, которая в качестве опоры имеет две стены. Получаем, что максимальное значение расчетного момента составляет:

Что же касается величины момента для бетона, то если учесть, что он испытывает сжимающее воздействие одновременно в перпендикулярных друг другу плоскостях, то ее значение будет больше, а именно,

Как известно, для расчетов требуется единая величина момента, поэтому в качестве его расчетного значения берут среднее арифметическое от Ма и Мб, которое в нашем случае равно 1472.6 кгс·м:

Как выбрать сечение арматуры ↑

В качестве примера произведем расчет сечения стержня по старой методике и сразу отметим, что конечный результат расчета по любой другой дает минимальную погрешность.

Какой бы способ расчеты вы ни выбрали, не надо забывать, высота арматуры в зависимости от ее расположения относительно осей x и z будет различаться.

В качестве значения высот предварительно примем: для первой оси h01 = 130 мм, для второй – h02 = 110 мм. Воспользуемся формулой А0n = M/bh30nRb. Соответственно получим:

Из представленной ниже вспомогательной таблицы найдем соответствующие значения η и ξ и посчитаем искомую площадь по формуле Fan= M/ηh0nRs.

Получаем

Фактически, для армирования 1 пог. м необходимо по 5 арматурных стержня для укладки в продольном и поперечном направлении с шагом 20 см.

Для выбора сечения можно воспользоваться нижележащей таблицей. К примеру, для пяти стержней ⌀10 мм получаем площадь сечения, равной 3,93 кв. см, а для 1 пог. м она будет в два раза больше – 7,86 кв. см.

Сечение арматуры, проложенной в верхней части, было взято с достаточным запасом, поэтому число арматуры в нижнем слое можно уменьшить до четырех. Тогда для нижней части площадь, согласно таблице составит 3,14 кв. см.

На заметку

Для расчета подобной плиты в панельном доме согласно имеющимся методикам расчета обычно применяют корректирующий коэффициент для учета также пространственной работы конструкции. Он позволяет примерно на 3–10 процентов сократить сечение. Однако многие специалисты считают, что, в отличие от заводских, для монолитных плит его использование не столь уж обязательно, поскольку при таком подходе возникает необходимость в ряде дополнительных расчетов, к примеру, на раскрытие трещин и прочих. И потом, если центральную часть армировать стержнями большего диаметра, то прогиб посередине будет изначально меньше. При необходимости его можно достаточно просто устранить или скрыть под финишной отделкой.

Пример расчета монолитной плиты перекрытия в виде прямоугольника ↑

Очевидно, что в подобных конструкциях момент, действующий по отношению к оси абсцисс, не может равняться его значению, относительно оси аппликат. Причем чем больше разброс между ее линейными размерами, тем больше она будет похожа на балку с шарнирными опорами. Иначе говоря, начиная с какого-то момента, величина воздействия поперечной арматуры станет постоянной.

На практике неоднократно была показана зависимость поперечного и продольного моментов от значения λ = l2 / l1:

Допустим, требуется рассчитать прямоугольную плиту 8х5 м. Учитывая, что расчетные пролеты это и есть линейные размеры помещения, получаем, что их отношение λ равно 1.6. Следуя кривой 1 на графике, найдем соотношение моментов. Оно будет равно 0.49, откуда получаем, что m2 = 0.49*m1.

Далее, для нахождения общего момента значения m1 и m2 необходимо сложить. В итоге получаем, что M = 1.49*m1. Продолжим: подсчитаем два изгибающих момента – для бетона и арматуры, затем с их помощью и расчетный момент.

Теперь вновь обратимся к вспомогательной таблице, откуда находим значения η1, η2 и ξ1, ξ2. Далее, подставив найденные значения в формулу, по которой вычисляют площадь сечения арматуры, получаем:

В итоге получаем, что для армирования 1 пог. м. плиты необходимо:

© 2019 stylekrov.ru

(8 votes, average: 3,63 out of 5)

stylekrov.ru

Расчет железобетонной плиты перекрытия

Монолитные изделия могут быть сделаны без применения подъемных кранов. Но, несмотря на массу преимуществ монолитных плит, немало людей попросту отказывается от их устройства. Причиной тому является невозможность проведения надлежащего расчета плиты на стадии планировочных работ. Именно этот фактор послужил толчком к созданию данной статьи. В ней описан весь процесс расчета монолитного ж/б перекрытия.

Этап 1. Определение расчетной длины плиты

Длина плиты и проектная длина плиты это очень разносторонние вещи. Фактическая длина плиты может быть любой. А вот расчетная длина (другими словами пролет балки, а в нашем случае плиты перекрытия) имеет совсем иные значения. Пролетом зовется расстояние в свету (минимальное расстояние между наиболее выпуклыми частями соседних элементов) между несущими стенами. А если быть точнее, то это рассчитываемая от стен длина и ширина помещения. И само собой, за счет опирания на стены, по факту плита будет длиннее.

Следует отметить, что монолитная железобетонная плита может опираться на несущие стены, возведенные из следующих материалов: кирпич, камень, газо- и пенобетон, керамзитобетон, шлакоблок. Если в качестве опор под плиту используется кладка из недостаточно прочных материалов (газобетон, пенобетон, керамзитобетон, шлакоблок), то этот материал должен пройти расчеты на соответствующие нагрузки.

В статье приведен пример однопролетной плиты перекрытия, которая опирается на две несущих стены. Расчет плиты при условии ее опирания на четыре несущих стены — рассмотрен не будет.

Примем значение расчетной длины плиты l=4 м.

Этап 2. Определение размеров плиты, класса арматуры и бетона

Без наличия этих параметров (а они нам неизвестны по определению) нами не будет выполнен расчет. Исходя из этого, неизвестные значения нами будут заданы самостоятельно.

Зададим параметры плиты: высота h=10 см; ширина b=100 см. Данная условность поможет определить значение 1 расчетного метра. Опираясь на это, при изготовлении плиты (к примеру) длиной 4 и шириной 6 метров, для каждого из 6 метров предстоит принять параметры, определенные для одного расчетного метра.

Итак, нами были приняты значения высоты h=10см, ширины b=100 см, а также класс бетона B20 и арматуры А400.

Этап 3: Определение опор

В зависимости от типа и тяжести стен, а также от ширины опирания на них плиты перекрытия, несущий элемент может быть рассмотрен как шарнирно опертая бесконсольная балка или же, как балка с жестким защемлением на опорах. В данной статье будет рассмотрен наиболее распространенный случай — шарнирно опертая безконсольная балка.

Этап 4: Определение предполагаемой нагрузки на плиту

Балка может испытывать самые разнообразные нагрузки. Строительная механика «гласит», что все неподвижное, прибитое, приклеенное или другим способом устроенное на плите перекрытия становится статистической и в тоже время постоянной нагрузкой. А все что движется (что передвигается разными способами) по балке становится динамической (как правило временной) нагрузкой. Все это к тому, что в данном примере нами будут убраны различия между этими видами нагрузок.

Сосредоточенная нагрузка измеряется в килограмм-силах (кгс или кг) либо в Ньютонах. Распределительная нагрузка измеряется в килограмм-сила-метр (кгс/м).

Расчет плиты перекрытия в жилых домах, как правило, нацелен на определение распределительной нагрузки q1=400 кг/м². Вес плиты высотой 100 мм добавит к этому типу нагрузи около 250 кг/м². А стяжка и чистовое покрытие (возьмем керамическую плитку) приплюсуют сюда еще дополнительных 100 кг/м².

В приведенной выше распределительной нагрузке учитывается большая часть из тех нагрузок, которые имеют отношение к перекрытиям в жилых домах. Однако это ни в коей мере не означает, что расчет конструкции с учетом более значимых нагрузок не может иметь место. Отнюдь, просто в нашем случае взятые значения являются усредненными. В тоже время мы в любом случае подстрахуемся и умножим итоговое значение нагрузки на так называемый коэффициент надежности γ=1.2.

q=(400+250+100)1.2=900 кг/м²

Поскольку наши расчеты опираются на плиту шириной 1 м, то нагрузка являющаяся распределительной, может быть рассмотрена как плоская (работающая на плиту перекрытия по оси «y» и измеряемая в кг/м).

Этап 5: Определение максимального изгибающего момента балки

Максимальный изгибающий момент плиты опирающейся на две стены находится по ее центру:

Для пролета l=4 м Мmax=(900х4²)/8=1800 кг·м

Этап 6: Расчетные допущения

Согласно СНиП 52-01-2003 и СП 52-101-2003 в основе расчета ж/б элементов лежит следующая информация:

Чтобы устранить возможность образования эффекта пластического шарнира (где значение изгибающего момента отдалена от нуля, вследствие чего происходит обрушение конструкции) соотношение ξ сжатой зоны бетона «y» расстоянию от центра тяжести арматуры до верха балки h0, ξ=у/ho (6.1) не должно превышать предельное значение ξR.

Для определения предельного значения используется следующая формула:

Формула (6.2) является эмпирической (опирающейся на непосредственное наблюдение) и выведена при проектировании железобетонных конструкций. Значение Rs — это сопротивление арматуры измеряемое в мПа (миллипаскалях). В тоже время, данный этап работ допускает использование таблицы 1.

Значение aR обозначает расстояние от центральной точки поперечного сечения арматуры до нижнего уровня балки. С увеличением этого расстояния (его минимальное значение не должно быть не меньше диаметра самой арматуры и не меньше 10 мм) усиливается сцепление арматуры с бетоном. Однако вместе с этим уменьшается полезное значение h0.

Таблица 1. Граничные значения относительной высоты сжатой зоны бетона:

Класс арматуры A240 A300 A400 A500 B500
Значение ξR 0,612 0,577 0,531 0,493 0,502
Значение aR 0,425 0,411 0,390 0,372 0,376

Если расчеты проводятся недостаточно квалифицированными проектировщиками (грубо говоря — не профессионалами) с целью предостережения, рекомендуется занижать значение сжатой зоны ξR в 1.5 раза.

В нашем случае, а=200 мм.

Если ξ ≤ ξR или же в сжатой зоне отсутствует арматура, для проверки прочности бетона используется следующая формула:

Смысл данной формулы следующий: поскольку любой момент может быть представлен в виде силы работающей с плечом, то в отношении бетона должно быть применено вышеприведенное условие.

При том же ξ ≤ ξR для проверки прочности прямоугольных сечений с одиночной арматурой используется следующая формула:

Смысл данной формулы следующий: согласно расчету, арматура должна выдерживать нагрузку равную той, что выдерживает бетон. Поскольку как первый, так и последний испытывает действие одинаковой силы с аналогичным плечом.

Данная расчетная схема не является единственной, расчет может быть произведен относительно центра тяжести приведенного сечения. Но стоит заметить, что железобетон является композитным (искусственно созданным сплошным материалом с неоднородным составом) материалом, за счет чего его расчет по предельным напряжениям (при сжимании или растяжении) возникающим в поперечном сечении ж/б балки достаточно непростая задача. В тоже время железобетон в этом не одинок. Разброс прочностных характеристик встречается у таких конструкционных материалов как сталь, алюминий и т.п. Сюда же можно отнести древесину, кирпич, а также полимерные композитные материалы.

Для определения высоты сжатой зоны бетона при отсутствии в ней арматуры используется следующая формула:

Для возможности определения сечения арматуры нужно определить коэффициент am:

Если аm < aR тогда необходимость наличия арматуры в сжатой зоне полностью отпадает. В свою очередь для определения аR используется таблица 1.

В случае отсутствия арматуры в сжатой зоне, для определения сечения арматуры используется следующая формула:

Пример расчета монолитной железобетонной плиты перекрытия

Обратите внимание, расчет будет проводиться на примере железобетонной бесконсольной плиты, которая находится на опорах шарнирного типа и подвергается равномерно распределительной нагрузке.

Этап 7: Подбор сечения арматуры

Согласно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» расчетное сопротивление растягивающим усилиям в отношении арматуры класса А400 составляет Rs=3600 кгс/см² (355 МПа). Согласно тому же СНиПу, расчетное сопротивление сжимающим нагрузкам для бетона класса B20 имеет значение Rb=117кгс/см² (11.5 МПа). Другие необходимые для расчета параметры и нагрузки в отношении плиты, нами были определены ранее.

Используя формулу (6.6) определим значение коэффициента аm: аm=1800/(1·0.08²·1170000)=0.24038

Примечание: с целью соблюдения размерности, значение расчетного сопротивление было приведено в кг/м².

Согласно таблице 1 полученное в результате расчетов значение является ниже предельного (0.24038 < 0.39), из этого исходит, что такие обстоятельства не требуют наличия арматуры в сжатой зоне. Получается, что по формуле (6.8) необходимая площадь сечения арматуры: As=117·100·8(1-√‾(1-2·0.24038))/3600=7.265 см².

Примечание: с целью упрощения вычисления, значения поперечного сечения были представлены в сантиметрах, а величины расчетных сопротивлений в кг/см².

Получается, что для армирования одного погонного метра понадобится 5 стержней Ø14 мм и с ячейкой 200 мм. Совместно с этим площадь сечения арматуры будет равняться 7.69 см². Тут же стоит отметить, что для повышения продуктивности подбора арматуры можно использовать таблицу 2:

Диаметр, мм Площадь поперечного сечения, см², при числе стержней
1 2 3 4 5 6 7 8 9 Масса 1 пог. м, кг
Проволочная и стержневая арматура
3 0.071 0,14 0,21 0,28 0,35 0,42 0,49 0,57 0,64 0,052
4 0,126 0,25 0,38 0,5 0,63 0,76 0,88 1,01 1,13 0,092
5 0,196 0,39 0,59 0,79 0,98 1,18 1,37 1,57 1,77 0,144
6 0,283 0,57 0,85 1,13 1,42 1,7 1,98 2,26 2,55 0,222
7 0,385 0,77 1,15 1,54 1,92 2,31 2,69 3,08 3,46 0,302
8 0,503 1,01 1,51 2,01 2,51 3,02 3,52 4,02 4,53 0,395
9 0,636 1,27 1,91 2,54 3,18 3,82 4,45 5,09 5,72 0,499
10 0,785 1,57 2,36 3,14 3,93 4,74 5,5 9,28 7,07 0,617
12 1,313 2,26 3,39 4,52 5,65 6,79 7,92 9,05 10,18 0,888
14 1,539 3,08 4,62 6,16 7,69 9,23 10,77 12,31 13,85 1,208
16 2,011 4,02 6,03 8,04 10,05 12,06 14,07 16,08 18,1 1,578
18 2,545 5,09 7,63 10,18 12,72 15,27 17,81 20,36 22,90 1,998
20 3,142 6,28 9,41 12,56 15,71 18,85 21,99 25,14 28,28 2,466
22 3,801 7,6 11,4 15,2 19,0 22,81 26,61 30,41 34,21 2,984
25 4,909 9,82 14,73 19,63 24,54 29,45 34,36 39,27 44,13 3,853
28 6,158 12,32 18,47 24,63 30,79 36,95 43,1 49,26 55,42 4,834
32 8,042 16,08 24,13 32,17 40,21 48,25 56,3 64,34 72,38 6,313
36 10,18 20,36 30,54 40,72 50,9 61,08 71,26 81,44 91,62 7,99
40 12,56 25,12 37,68 50,24 62,8 75,36 87,92 100,48 113,04 9,87
45 15,904 31,81 47,71 63,62 79,52 95,42 111,33 127,23 143,13 12,49
50 19,635 39,27 58,91 78,54 98,18 117,81 137,45 157,08 176,72 15,41
55 23,76 47,52 71,28 95,04 118,8 142,56 166,32 190,08 213,84 18,65
60 28,27 56,54 84,81 113,08 141,35 169,62 197,89 226,16 254,43 22,19
70 38,48 76,96 115,44 153,92 192,4 230,88 269,36 307,84 346,32 30,32
80 50,27 100,55 150,81 201,08 251,35 301,62 351,9 402,15 452,43 39,46
Семипроволочные канаты класса К-7
4,5 0,127 0,25 0,38 0,51 0,64 0,76 0,89 1,01 1,14 0,102
6 0,226 0,45 0,68 0,9 1,13 1,36 1,58 1,81 2,03 0,181
7,5 0,354 0,71 1,06 1,41 1,77 2,12 2,48 2,83 3,18 0,283
9 0,509 1,02 1,53 2,04 2,54 3,05 3,56 4,07 4,58 0,407
12 0,908 1,82 2,72 3,63 4,54 5,45 6,35 7,26 8,17 0,724
15 1,415 2,83 4,24 5,66 7,07 8,49 9,9 11,32 12,73 1,132

В армировании также могут быть использованы 7 стержней Ø12 мм с ячейкой 140 мм или же 10 стержней большего диаметра Ø10 мм с ячейкой 100 мм.

Используя формулу (6.5) даем оценку прочности бетона: у=3600·7.69 / (117·100) = 2.366 см

ξ=2.366/8=0.29575 — полученное значение ниже граничного 0.531 и согласно формуле (6.1), а также таблице 1, ниже рекомендуемого 0.531/1.5=0.354 что удовлетворяет необходимые требования.

Выходит, что все соответствует нужным требованиям.

При увеличении класса бетона до В25, снижается количество требуемой арматуры, поскольку для В25 Rb=148 кгс/см² (14.5 МПа).

Из этого исходит, что для армирования 1 погонного метра плиты перекрытия понадобится всего 5 стержней диаметром 14 мм с шагом 200 мм (допускается продолджение подбора сечения). Также стоит заметить, что с целью удовлетворения требованиям по максимально допустимому прогибу, высота плиты завышается до 130-140 мм, при этом сечение арматуры составляет 4-5 стержней Ø16 мм.

domaster.ucoz.org


Смотрите также