Как измерить площадь неправильного четырехугольника


Площадь четырехугольника

Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн.

Площадь четырехугольника - это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.

В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.

1

d1 - диагональ

d2 - диагональ

α° - угол между диагоналями

... подготовка ...

2

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

a - сторона

b - сторона

c - сторона

d - сторона

α° - угол между сторонами

β° - угол между сторонами

... подготовка ...

3

Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

a - сторона

b - сторона

c - сторона

d - сторона

... подготовка ...

4

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

a - сторона

b - сторона

c - сторона

d - сторона

r - радиус вписанной окружности

... подготовка ...

5

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

a - сторона

b - сторона

c - сторона

d - сторона

α° - угол между сторонами

β° - угол между сторонами

... подготовка ...

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км2, м2, см2, мм2 и т.д.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться нашим «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

doza.pro

Калькулятор расчета площади земельного участка неправильной формы с разными сторонами

Во многих случаях может потребоваться расчет площади земельного участка, например, в случае покупки, сдачи в аренду или проведении межевания.

Если надел имеет форму квадрата или правильного прямоугольника, то сделать это достаточно просто. Но как произвести расчет, если участок неправильной формы? В этом случае лучше всего воспользоваться онлайн-калькулятором.

Инструкция по использованию

Для расчета площади участка четырехугольной формы выполните следующие действия: 

Если вы хотите узнать, как в 2019 году решить именно Вашу проблему, обращайтесь через форму онлайн-консультанта или звоните по телефонам:

  1. Введите длину первой стороны в метрах (AB);
  2. Введите длину второй стороны в метрах (BC);
  3. Введите длину третьей стороны в метрах (CD);
  4. Введите длину четвертой стороны в метрах (DA).

В результате вы получите размер участка квадратных метрах и в сотках.

Или задайте вопрос юристу на сайте. Это быстро и бесплатно!

zakonguru.com

Площадь четырехугольника

Четырехугольником называется фигура, состоящая из четырех вершин, три из которых не лежат на одной прямой, и отрезков, соединяющих их. Существует множество четырехугольников. К ним относятся параллелограммы, квадраты, ромбы, трапеции. Найти площадь квадрата можно найти по сторонам, площадь ромба легко вычисляется по диагоналям. В произвольном четырехугольнике также можно использовать все элементы для вывода формулы площади четырехугольника. Для начала рассмотрим формулу площади четырехугольника через диагональ. Для того, чтобы ее использовать потребуются длины диагоналей и размер острого угла между ними. Зная необходимые данные можно проводить пример расчета площади четырехугольника по такой формуле:

Половина произведения диагоналей и синуса острого угла между ними является площадью четырехугольника. Рассмотрим пример расчета площади четырехугольника через диагональ.

Пусть дан четырехугольник с двумя диагоналями d1=5 см;d2=4см. Острый угол между ними равен α = 30°. Формула площади четырехугольника через диагонали легко применяется для известных условий. Подставим данные:

На примере расчета площади четырехугольника через диагонали понимаем, что формула очень похожа на расчет площади параллелограмма.

Площадь четырехугольника по сторонам

Когда известны длины сторон фигуры, можно применить формулу площади четырехугольника по сторонам. Для применения этих расчетов потребуется найти полупериметр фигуры. Мы помним, что периметр – это сумма длин всех сторон. Полупериметр – это половина периметра. В нашем прямоугольнике со сторонами a, b, c, d формула полупериметра будет выглядеть так: Зная стороны, выводим формулу. Площадь четырехугольника представляет собой корень из произведения разности полупериметра с длиной каждой стороны:

Рассмотрим пример расчета площади четырехугольника через стороны. Дан произвольный четырехугольник со сторонами a = 5 см, b = 4 см, с = 3 см, d = 6 см. Для начала найдем полупериметр: используем найденное значение для расчета площади:

Площадь четырехугольника, заданного координатами

Формула площади четырехугольника по координатам используется для расчета площади фигур, которые располагаются в системе координат. В этом случае для начала требуется расчет длин необходимых сторон. В зависимости от типа четырехугольника может меняться и сама формула. Рассмотрим пример расчета площади четырехугольника, используя квадрат, который лежит в системе координат XY.

Дан квадрат ABCD, расположенный в системе координат XY. Найти площадь фигуры, если координаты вершин A(2;10); B(10;8); C(8;0); D(0;2).

Мы знаем, что все стороны фигуры равны, и формула площади квадрата находится по формуле: Найдем одну из сторон, к примеру, AB: Подставим значения в формулу: Знаем, что все стороны одинаковые. Подставляем значение в формулу расчета площади:

Page 2

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом.

Формула площади сектора кольца, выраженная через внешний и внутренний радиусы

Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Возьмем на окружности с большим радиусом две произвольные точки. Проведем к ним радиусы, которые образуют угол α. Эти радиусы отсекут от окружностей некоторые дуги. Фигура, заключенная между этими дугами окружностей и радиусами, проведенными к концам этих дуг, и будет сектор кольца, у которого R является внешним радиусом, r -внутренним радиусом. Тогда площадь этой фигуры будет равна разницы между площадью сектора круга с большим радиусом и площадью сектора круга с меньшим радиусом.

Площадь сектора круга с радиусом r выражается формулой:

где l–длина дуги равная Подставим выражение длины дуги в формулу площади сектора. Получим:

Площадь круга с радиусом R выражается формулой: где L–длина дуги равная Подставим выражение длины дуги в формулу площади сектора. Получим:

Тогда площадь кольца будет равна:

Таким образом, площадь сектора кольца равна произведению площади единичного сектора кольца, то есть сектору, соответствующему центральному углу с мерой равной единице на меру центрального угла, соответствующего данному сектору.

Формула имеет вид:

Пример расчета площади сектора кольца, если известны его радиусы. Найдите площадь сектора кольца, образованного углом 30° , если его внешний радиус равен 14, а внутренний – 8. Площадь кольца вычисляется по формуле:

Подставив значения из условия задачи, имеем:

Page 3

Чтобы найти объем конуса необходимо произвести дополнительные построения. Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду. Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность. Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен: Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды. Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды. Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле: Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше Поэтому утверждение,что объем описанной пирамиды не больше верно. А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен Два полученных неравенства равны при любом n. Если то Тогда из первого неравенства следует, что V≥ Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конуса Найти объем конуса, если его радиус основания равен 3 см, а образующая 5 см. Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник. Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса. Имеем:

Page 4

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h . Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h. Из подобия этих конусов получаем:

Выразим x: Тогда объем усеченного конуса можно выразить:

Применив формулу разницы кубов, имеем:

Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конуса Радиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса. Объем усеченного конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник. Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 5

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 6

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил. Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой. Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20. Читать далее

Таблица кубов натуральных чисел от 1 до 100 Читать далее

Таблица факториалов от 1 до 40 Читать далее

Page 7

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

2mb.ru

Калькулятор расчета площади земельного участка неправильной формы

Данный онлайн калькулятор помогает произвести расчет, определение и вычисление площади земельного участка в онлайн режиме. Представленная программа способна правильно подсказать, как выполнить расчет площади земельных участков неправильной формы.

Важно! Важ участок должен приблизительно вписываться в окружность. Иначе расчеты будут не совсем точными.

Указываем все данные в метрах

A B, D A, C D, B C— Размер каждой стороны делянки.

Согласно введен данным, наша программа в онлайн режиме выполнить расчет и определить, площадь земельных угодий в квадратных метрах, сотках, акрах и гектарах.

Методика определения размеров участка ручным методом

Чтобы правильно выполнить расчет площади делянок, не нужно использовать сложные инструменты. Мы берем деревянные колышки или металлические прутья и устанавливаем их в углах нашего участка. Далее при помощи измерительной рулетки определяем ширину и длину делянки. Как правило, достаточно выполнить замер одной ширины и одной длины, для прямоугольных или равносторонних участков. Для примера, у нас получились следующие данные: ширина – 20 метров и длина – 40 метров.

Далее переходим к расчету площади делянки. При правильной форме участка, можно использовать геометрическую формулу определения площади (S) прямоугольника. Согласно этой формуле, нужно выполнить умножение ширины (20) на длину (40) , то есть произведение длин двух сторон. В нашем случае S=800 м².

После того, как мы определили нашу площадь, мы можем определить количество соток на земельном участке. Согласно общепринятым данным, в одной сотке – 100 м². Далее при помощи простой арифметики, мы разделим наш параметр S на 100. Готовый результат и станет равен размеру делянки в сотках. Для нашего примера, этот результат – 8. Таким образом, получаем, что площадь участка составляет восемь соток.

В том случае, когда территория угодий очень большая, то лучше всего выполнять все измерения в других единицах – в гектарах. Согласно общепринятым единицам измерения – 1 Га = 100 соток. К примеру, если наша земельная делянка согласно полученным измерениям составляем 10 000 м², то в этом случае его площадь равна 1 гектару или 100 соткам.

Если Ваш участок неправильной формы, то в этом случае количество соток напрямую зависит от площади. Именно по этой причине при помощи онлайн калькулятора Вы сможете правильно рассчитать параметр S делянки, и после этого разделив полученный результат на 100. Таким образом, Вы получите расчеты в сотках. Такой метод предоставляет возможность измерять делянки сложных форм, что весьма удобно.

Общие данные

Расчет площади земельных участков базируется на классических расчетах, которые выполняются согласно общепринятым геодезическим формулам.

Всего доступно несколько методов для расчета площади земельных угодий – механический (рассчитывается по плану при помощи мерных палеток), графический (определяется по проекту) и аналитический (при помощи формулы площади по измеренным линиям границ).

На сегодняшний день самым точным способом заслуженно считается – аналитический. Используя данный метод, ошибки при расчетах, как правило, появляются из-за погрешностей на местности измеренных линий. Данный способ является также и достаточно сложным, если границы криволинейные или количество углом на делянке больше десяти.

Немного проще по расчетам является графическим способ. Его лучше всего использовать в том случае, когда границы участка представлены в виде ломанной линии, с небольшим количеством поворотов.

И самый доступный и простой способ, и наиболее популярный, но и в тоже время самой большой погрешностью – механический способ. Используя данный метод, Вы сможете легко и быстро выполнить расчет площади земельных угодий простой или сложной формы.

Среди серьезных недостатков механического или графического способа, выделяют следующее, кроме погрешностей при измерении участка, при расчетах добавляется погрешность из-за деформации бумаги или погрешность при составлении планов.

o-builder.ru

Площадь четырехугольника

Есть несколько способов найти площадь неправильного четырехугольника.

https://en.wikipedia.org/wiki/File:Tetragon_measures.svg

Картинка: википедия

  1. Вы знаете длины диагоналей и размер угла между ними. Тогда площадь четырехугольника можно найти по формуле

Калькулятор:

Точность вычисления

Знаков после запятой: 2

  1. Вы знаете длины четырех сторон и размеры двух противолежащих углов. Тогда площадь четырехугольника можно найти по формуле Бретшнайдера.

, где s — полупериметр.

Калькулятор:

  1. Вы знаете длины четырех сторон и длины диагоналей. Тогда площадь четырехугольника тоже можно найти по формуле Бретшнайдера.

, где s — полупериметр

Калькулятор:

Точность вычисления

Знаков после запятой: 2

  1. Вы знаете длины четырех сторон и то, что четырехугольник является вписанным в окружность. Тогда вы имеете дело с частным случаем формулы Бретшнайдера (сумма двух противолежащих углов известна и равна 180), известным как формула Брахмагупты.

, где s — полупериметр

Для вычисления можно использовать калькулятор выше, введя произвольно два угла так, чтобы их сумма составляла 180.

Вывод самих формул Бретшнайдера можно посмотреть здесь.

Ну и напоследок еще раз упомяну, что зная только длины четырех сторон вычислить площадь четырехугольника нельзя, так как нельзя однозначно определить его вид — нужно еще какое-нибудь ограничивающее условие. Так как у нас на сайте довольно часто просили посчитать площадь четырехугольника только по четырем сторонам, то еще есть вот такой вот шуточный калькулятор: Площадь неправильного четырехугольника с заданными сторонами, который бесконечно рассчитывает такие площади.

planetcalc.ru

Площади четырехугольников

Справочник по математикеГеометрия (Планиметрия)Четырехугольники

      В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:

S = ab,

которая позволяет найти площадь прямоугольникапрямоугольника с основанием a и высотой b.

Формулы для площадей четырехугольников

ЧетырехугольникРисунокФормула площадиОбозначения
ПрямоугольникS = ab

a и b – смежные стороны

Посмотреть вывод формулы

d – диагональ,φ – любой из четырёх углов между диагоналями

S = 2R2 sin φ

Получается из верхней формулы подстановкой d=2R

R – радиус описанной окружности,φ – любой из четырёх углов между диагоналями

Параллелограмм

S = a ha

Посмотреть вывод формулы

a – сторона,ha – высота, опущенная на эту сторону

S = absin φ

Посмотреть вывод формулы

a и b – смежные стороны,φ – угол между ними

Посмотреть вывод формулы

d1, d2 – диагонали,

φ – любой из четырёх углов между ними

КвадратS = a2

a – сторона квадрата

S = 4r2

r – радиус вписанной окружности

Посмотреть вывод формулы

d – диагональ квадрата

S = 2R2

Получается из верхней формулы подстановкой d = 2R

R – радиус описанной окружности

Ромб

S = a ha

Посмотреть вывод формулы

a – сторона,ha – высота, опущенная на эту сторону

S = a2 sin φ

Посмотреть вывод формулы

a – сторона,φ – любой из четырёх углов ромба

Посмотреть вывод формулы

d1, d2 – диагонали

S = 2ar

Посмотреть вывод формулы

a – сторона,r – радиус вписанной окружности

Посмотреть вывод формулы

r – радиус вписанной окружности,φ – любой из четырёх углов ромба

Трапеция

Посмотреть вывод формулы

a и b – основания,h – высота

S = m h

m – средняя линия,h – высота

Посмотреть вывод формулы

d1, d2 – диагонали,

φ – любой из четырёх углов между ними

Посмотреть вывод формулы

a и b – основания,c и d  – боковые стороны

ДельтоидS = ab sin φ

a и b – неравные стороны,φ – угол между ними

a и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

Посмотреть вывод формулы

a и b – неравные стороны,r – радиус вписанной окружности

Посмотреть вывод формулы

d1, d2 – диагонали

Произвольный выпуклый четырёхугольник

Посмотреть вывод формулы

d1, d2 – диагонали,

φ – любой из четырёх углов между ними

Вписанный четырёхугольник

,

Посмотреть вывод формулы Брахмагупты

a, b, c, d – длины сторон четырёхугольника,p – полупериметр,

Формулу называют «Формула Брахмагупты»

Прямоугольник

S = ab

гдеa и b – смежные стороны

гдеd – диагональ,φ – любой из четырёх углов между диагоналями

Посмотреть вывод формулы

S = 2R2 sin φ

гдеR – радиус описанной окружности,φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

Параллелограмм

S = a ha

гдеa – сторона,ha – высота, опущенная на эту сторону

Посмотреть вывод формулы

S = absin φ

гдеa и b – смежные стороны,φ – угол между ними

Посмотреть вывод формулы

гдеd1, d2 – диагонали,

φ – любой из четырёх углов между ними

Посмотреть вывод формулы

Квадрат
S = a2

гдеa – сторона квадрата

S = 4r2

гдеr – радиус вписанной окружности

гдеd – диагональ квадрата

Посмотреть вывод формулы

S = 2R2

гдеR – радиус описанной окружности

Получается из верхней формулы подстановкой d = 2R

Ромб

S = a ha

гдеa – сторона,ha – высота, опущенная на эту сторону

Посмотреть вывод формулы

S = a2 sin φ

гдеa – сторона,φ – любой из четырёх углов ромба

Посмотреть вывод формулы

гдеd1, d2 – диагонали

Посмотреть вывод формулы

S = 2ar

гдеa – сторона,r – радиус вписанной окружности

Посмотреть вывод формулы

гдеr – радиус вписанной окружности,φ – любой из четырёх углов ромба

Посмотреть вывод формулы

Трапеция

гдеa и b – основания,h – высота

Посмотреть вывод формулы

S = m h

гдеm – средняя линия,h – высота

гдеd1, d2 – диагонали,

φ – любой из четырёх углов между ними

Посмотреть вывод формулы

гдеa и b – основания,c и d  – боковые стороны

Посмотреть вывод формулы

Дельтоид

S = ab sin φ

гдеa и b – неравные стороны,φ – угол между ними

гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

гдеa и b – неравные стороны,r – радиус вписанной окружности

Посмотреть вывод формулы

гдеd1, d2 – диагонали

Посмотреть вывод формулы

Произвольный выпуклый четырёхугольник

гдеd1, d2 – диагонали,

φ – любой из четырёх углов между ними

Посмотреть вывод формулы

Вписанный четырёхугольник

,

гдеa, b, c, d – длины сторон четырёхугольника,p – полупериметр

Формулу называют «Формула Брахмагупты»

Посмотреть вывод формулы Брахмагупты

Прямоугольник

S = ab

гдеa и b – смежные стороны

гдеd – диагональ,φ – любой из четырёх углов между диагоналями

Посмотреть вывод формулы

S = 2R2 sin φ

гдеR – радиус описанной окружности,φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

Параллелограмм

S = a ha

гдеa – сторона,ha – высота, опущенная на эту сторону

Посмотреть вывод формулы

S = absin φ

гдеa и b – смежные стороны,φ – угол между ними

Посмотреть вывод формулы

гдеd1, d2 – диагонали,

φ – любой из четырёх углов между ними

Посмотреть вывод формулы

Квадрат

S = a2

гдеa – сторона квадрата

S = 4r2

гдеr – радиус вписанной окружности

гдеd – диагональ квадрата

Посмотреть вывод формулы

S = 2R2

гдеR – радиус описанной окружности

Получается из верхней формулы подстановкой d = 2R

Ромб

S = a ha

гдеa – сторона,ha – высота, опущенная на эту сторону

Посмотреть вывод формулы

S = a2 sin φ

гдеa – сторона,φ – любой из четырёх углов ромба

Посмотреть вывод формулы

гдеd1, d2 – диагонали

Посмотреть вывод формулы

S = 2ar

гдеa – сторона,r – радиус вписанной окружности

Посмотреть вывод формулы

гдеr – радиус вписанной окружности,φ – любой из четырёх углов ромба

Посмотреть вывод формулы

Трапеция

гдеa и b – основания,h – высота

Посмотреть вывод формулы

S = m h

гдеm – средняя линия,h – высота

гдеd1, d2 – диагонали,

φ – любой из четырёх углов между ними

Посмотреть вывод формулы

гдеa и b – основания,c и d  – боковые стороны,

Посмотреть вывод формулы

Дельтоид

S = ab sin φ

гдеa и b – неравные стороны,φ – угол между ними

гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

гдеa и b – неравные стороны,r – радиус вписанной окружности

Посмотреть вывод формулы

гдеd1, d2 – диагонали

Посмотреть вывод формулы

Произвольный выпуклый четырёхугольник

гдеd1, d2 – диагонали,

φ – любой из четырёх углов между ними

Посмотреть вывод формулы

Вписанный четырёхугольник

гдеa, b, c, d – длины сторон четырёхугольника,p – полупериметр

Формулу называют «Формула Брахмагупты»

Посмотреть вывод формулы Брахмагупты

Вывод формул для площадей четырехугольников

      Утверждение 1. Площадь выпуклого четырёхугольника можно найти по формуле

где  d1 и d2 – диагонали четырёхугольника, а φ – любой из четырёх углов между ними (рис. 1).

Рис. 1

      Доказательство. В соответствии с рисунком 1 справедливо равенство:

что и требовалось доказать.

      Утверждение 2. Площадь параллелограммапараллелограмма можно найти по формуле

S = a ha ,

где a – сторона параллелограмма, а ha – высотавысотавысота, опущенная на эту сторону (рис. 2).

Рис. 2

      Доказательство. Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому

SABCD = SAEFD = a ha ,

что и требовалось доказать.

      Утверждение 3.Площадь параллелограмма параллелограмма можно найти по формуле

S = ab sin φ,

где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).

Рис. 3

      Доказательство. Поскольку

ha = b sin φ,

то, в силу утверждения 2, справедлива формула

S = a ha = ab sin φ,

что и требовалось доказать.

      Утверждение 4. Площадь ромбаромба можно найти по формуле

,

где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).

Рис. 4

      Доказательство. Поскольку каждая из диагоналей ромба является биссектрисой угла, а каждая точка биссектрисы угла равноудалена от сторон угла, то точка пересечения диагоналей ромба равноудалена от всех сторон ромба и является центром вписанной в ромб окружности. Отсюда следует, в частности, что высота ромба в 2 раза больше радиуса вписанной окружности (рис.4). Поэтому

что и требовалось доказать.

      Утверждение 5. Площадь трапеции можно найти по формуле

,

где a и b – основания трапеции, а h  – высотавысотавысота (рис.5).

Рис. 5

      Доказательство. Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD. Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF. Поэтому

что и требовалось доказать.

      Утверждение 6. Площадь трапеции трапеции можно найти по формуле

,

где a и b – основания, а c и d – боковые стороны трапеции, (рис.6).

Рис. 6

      Доказательство. Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

      Следовательно,

где

,

что и требовалось доказать.

      Утверждение 7. Площадь дельтоида, дельтоида, можно найти по формуле:

S = (a + b) r,

где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).

Рис. 7

      Доказательство. Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D, а биссектрисы углов A и C пересекаются в некоторой точке O, лежащей на диагонали BD. Точка O и является центром вписанной в дельтоид окружности.

      Если r – радиус вписанной в дельтоид окружности, то

что и требовалось доказать.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 8, 9, 10 и 11 классов

      У нас также для школьников организованы

индивидуальные занятия с репетиторами по математике и русскому языку

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Площадь неправильного 4-х угольника с заданными сторонами

Следующий калькулятор был создан по неоднократному запросу создать калькулятор, который бы смог считать площадь неправильного четырехугольника, в котором известны длины сторон.

Все мы понимаем, что данный четырехугольник может иметь любой вид (параллелограмма, квадрата, прямоугольника и так далее). Углы могут быть совершенно разные. По этому был создан уникальный калькулятор, который в реальном режиме прорисовывает четырехугольник и сразу считает его площадь, длины сторон нужно задать сразу вверху калькулятора, а потом нажать остановить на том четырехугольнике, площадь которого вы хотите посчитать.

 '%1' is not a valid e-mail address. Please fill in this field. The field must contain at least% 1 characters. The value must not be longer than% 1 characters. Field value does not coincide with the field '%1' An invalid character. Valid characters:'%1'. It is expected a positive number. It is expected a positive integer. The value should be in the range of [%1 .. %2] The '% 1' is already present in the set of valid characters. The field must be less than 1%. The first character must be a letter of the Latin alphabet. An error occurred while importing data on line% 1. Value: '%2'. Error: %3 Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,). Wrong file format. Only the following formats: %1

hostciti.net


Смотрите также