Инверторный стабилизатор напряжения 220в для дома своими руками схема


Мощный стабилизатор напряжения своими руками: схема + инструктаж по сборке

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.

Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.

Стабилизация напряжения бытовой сети

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают стабилизатор для газового котла, автоматика которого требует подключения к электропитанию, для холодильника, насосного оборудования, сплит систем и подобных потребителей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений стабилизаторов напряжения на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше купить готовое устройство. В этом деле без опыта и знаний в сфере электротехники не обойтись.

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Подробные инструкции по сборке

Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор в данном случае применяется из числа тех, что устанавливались в телевизорах старых моделей.

Вот такой примерно силовой трансформатор потребуется под изготовление самодельной конструкции стабилизатора. Однако не исключается подбор других вариантов или же намотка своими руками

Правда в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется как минимум ТС-320 чтобы обеспечить выходную нагрузку до 2 кВт.

Шаг #1 – изготовление корпуса стабилизатора

Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

Допустимо подобрать корпус от любой электроники, подходящий под размещение всех рабочих компонентов схемы самодельного стабилизатора. Также корпус можно собрать своими руками, к примеру, из листов стеклотекстолита

Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

Шаг #2 – изготовление печатной платы

Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора. Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

Далее вытравливают плату при помощи соответствующего раствора (электронщикам метод травления плат должен быть знаком).

Изготовить печатную плату стабилизатора вполне доступными способами можно непосредственно в домашних условиях. Для этого нужно приготовить трафарет и набор средств для травления на фольгированном текстолите

Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

Шаг #3 – сборка стабилизатора напряжения

Укомплектованная радиодеталями плата подготавливается для внешней обвязки. В частности, от платы выводятся линии внешней связи (проводники) с другими элементами – трансформатором, выключателем, интерфейсами и т.д.

На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

Пример самодельного стабилизатора напряжения релейного типа, изготовленного в домашней обстановке, помещённого в корпус от пришедшего в негодность промышленного измерительного прибора

Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов. Можно приступать к настройке с дальнейшими испытаниями.

 Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840. Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.

Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

Часть схемы, в которую включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа. Соответственно, на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Если процесс изготовления стабилизатора показался вам слишком сложным и нерациональным с практической точки зрения, без особых проблем можно найти и приобрести устройство заводского исполнения. Правила и критерии выбора стабилизатора на 220 В приведены в рекомендуемой нами статье.

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самоделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, публикуйте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как собрали стабилизатор напряжения собственными руками. Поделитесь полезной информацией, которая может пригодиться посещающим сайт начинающим электротехникам.

sovet-ingenera.com

Схема стабилизатора напряжения 220В своими руками для дома

Электрическая сеть во многих наших домах не может похвастаться высоким качеством, в особенности это актуально для сельской местности, которая удалена от города. Поэтому нередко происходят перепады напряжения. Местные производители электрических приборов учитывают данное обстоятельство и предусматривают запас прочности. Но многие люди пользуются в основном заграничной техникой, для которой такие скачки губительны. В связи с чем необходимо пользоваться специальными устройствами. И не обязательно их покупать в магазинах, можно изготовить стабилизатор напряжения 220В своими руками по схеме. Задача эта не совсем сложная, если делать все по инструкции.

Только перед сборкой необходимо ознакомиться с существующими видами подобных устройств и узнать, каков их принцип действия.

Вынужденная мера

В идеале электросеть может работать эффективно при незначительных перепадах напряжения – не более 10%, как большую, так и в меньшую сторону от номинала 220В. Однако, как показывают реальные условия эксплуатации, изменения эти временами довольно значительны. А это уже грозит выходом из строя подключенных приборов.

И чтобы избежать таких неприятностей, создано такое устройство, как стабилизатор напряжения. И если ток выйдет за границы допустимого значения, устройство в автоматическом режиме обесточит подключенные электроприборы.

Чем еще может быть вызвана необходимость в таком устройстве и почему некоторые люди задумываются над изготовлением самодельного стабилизатора напряжения 220В по схеме? Наличие такого помощника оправдано в силу следующих возможностей:

Если в месте проживания такие электрические «аномалии» случаются часто, стоит задуматься над приобретением хорошего стабилизатора. В крайнем случае собрать его самостоятельно.

Разновидности стабилизаторов

Главная составляющая любого такого оберегающего электрического устройства – это его автотрансформатор регулируемого типа. В настоящее время многими производителями выпускается несколько видов приборов, у которых реализована своя технология стабилизации напряжения. К таковым относятся две основные схемы стабилизатора напряжения 220В для дома:

Существуют еще и феррорезонансные аналоги, которые в быту практически не используются, но о них будет сказано чуть позднее. Теперь же стоит перейти к описанию существующих моделей.

Электромеханические (сервоприводные) устройства

Регулировка напряжения электросети производится посредством ползунка, который передвигается по обмотке. Одновременно с этим задействуется разное количество витков. Все мы учились в школе, а некоторые может быть имели дело с реостатом на уроках физики.

По такому аналогичному принципу работает электромеханический стабилизатор напряжения. Только перемещение ползунка осуществляется не вручную, а при помощи электродвигателя, называемого сервоприводом. Знать устройство этих приборов просто необходимо, если есть желание изготовить стабилизатор напряжения 220В своими руками по схеме.

Электромеханические устройства отличаются высокой надежностью, и обеспечивают плавную регулировку напряжения. Характерные преимущества:

К сожалению, при всех достоинствах присутствуют и недостатки:

Стоит заметить, что в отличие от инверторного стабилизатора напряжения 220В (своими руками по схеме его можно изготовить вопреки кажущимся сложностям), здесь еще имеется трансформатор. А что касается принципа работы, то анализ напряжения производится электронным блоком управления. Если он заметит значительные отклонения от номинального значения, он посылает команду на перемещение ползунка.

Ток регулируется путем подключения большего количества витков трансформатора. На тот случай, если прибор не успевает своевременно среагировать на чрезмерное превышение напряжения, в устройстве стабилизатора предусмотрено реле.

Электронные стабилизаторы

Принцип действия электронных приборов устроен немного иначе. Здесь в основе лежат несколько схем:

Работают такие устройства бесшумно, за исключением релейных стабилизаторов. У них переключение режимов осуществляется при помощи силовых реле, которыми управляет электронный блок управления. Поскольку они механически разъединяют контакты, то во время эксплуатации таких приборов время от времени слышен шум. Для кого-то это может быть серьезным минусом.

Поэтому лучшим выбором будет приобретение или изготовление инверторного стабилизатора напряжения 220В своими руками, схему которого найти несложно.

Другие электронные аналоги имеют специальные ключи тиристоры и семисторы и поэтому работают они в бесшумном режиме. Также это позволяет стабилизаторам срабатывать практически мгновенно. Среди прочих достоинств можно выделить:

Общий недостаток электронных устройств заключается в ступенчатой схеме регулировки напряжение электросети. К тому же тиристорные приборы имеют самую высокую стоимость, но в то же время и отличаются весьма долгим сроком службы.

Инверторная технология

Отличительной особенностью таких устройств является отсутствие трансформатора в конструкции прибора. Однако регулировка напряжения осуществляется электронным способом, а поэтому он относится к предыдущему типу, но является как бы отдельным классом.

Если есть желание изготовить самодельный стабилизатор напряжения 220В, схему которого нетрудно достать, то лучше выбрать именно инверторную технологию. Ведь тут интересен сам принцип работы. Инверторные стабилизаторы оснащаются двойными фильтрами, что позволяет минимизировать отклонения напряжения от номинального значения в пределах 0,5%. Поступающий в устройство ток, преобразуется в постоянное напряжение, проходит через весь прибор, а перед выходом снова принимает прежнюю форму.

Феррорезонансные аналоги

Принцип действия феррорезонансных стабилизаторов основывается на эффекте магниторезонанса, возникающий в той системе с дросселями и конденсаторами. В работе они немного похожи на электромеханические устройства, только вместо ползунка здесь ферромагнитный сердечник, перемещающийся относительно катушек.

Подобная система отличается высокой надежностью, однако имеет большие размеры и издает много шума при работе. Также присутствует серьезный недостаток – функционируют такие приборы лишь под нагрузкой.

Если ранее такая схема сетевого стабилизатора напряжения 220В пользовалась популярностью, то теперь от нее лучше отказаться. К тому же здесь не исключены синусоидальные искажения. По этой причине для современных бытовых электрических приборов такой вариант не подходит. Но если в хозяйстве имеются мощные электродвигатели, ручные инструменты, сварочные аппараты, то такие стабилизаторы еще применимы.

Феррорезонансные стабилизаторы были широко распространены в быту 20 или 30 лет назад. В то время через них питались старые телевизоры, поскольку имели особую конструкцию, которая не позволяло безопасно использовать электросеть напрямую. Существуют современные модели этих стабилизаторов, которые лишены многих недостатков, но стоят они очень дорого.

Самодельный аппарат

А какую можно реализовать схему стабилизатора напряжения 220В своими руками? Самый простой вариант стабилизатора состоит из минимального количества комплектующих:

Используя простейшие навыки, собрать устройство не так сложно, как может показаться. Но при наличии старого сварочного аппарата все упрощается, поскольку он практически уже собран. Однако проблема в том, что не у каждого человека найдется такой сварочный аппарата, а поэтому лучше подыскать другой способ для самодельного устройства.

По этой причине рассмотрим, как можно изготовить некоторый аналог симисторного стабилизатора. Данный прибор будет рассчитан на входной рабочий диапазон 130-270 В, а на выход будет подаваться от 205 до 230 В. Большая разница входного тока это скорее плюс, а вот для выходного – это уже минус. Но для многих бытовых приборов эта разница допустима.

Что касается мощности, то схема тиристорного стабилизатора напряжения 220В, своими руками изготавливаемого, допускает подключение электроприборов до 6 кВт. Переключение нагрузки производится в течение 10 миллисекунд.

Преимущества самодельного устройства

У стабилизатора, изготовленного самостоятельно, есть своим плюсы и минусы, о которых непременно следует знать. Главные преимущества:

Самое очевидное достоинство заключается в невысокой себестоимости. Все детали нужно будет приобрести по отдельности, а это все равно несравнимо с готовыми стабилизаторами.

В случае выхода из строя какого-нибудь элемента приобретенного стабилизатора напряжения, вряд ли его можно заменить самому. В этом случае остается только вызывать мастера на дом или везти его в сервисный центр. Даже если имеются определенные знания в области электротехники, найти подходящую деталь не так просто. Совсем другое дело, если прибор был изготовлен собственноручно. Все детали уже знакомы и для покупки новой, достаточно наведаться в магазин.

Если кто-либо ранее уже собирал схему стабилизатора напряжения 220В 10кВт своими руками, значит, человек уже разбирается во многих тонкостях. Это значит, что выявить неисправность не составит особого труда.

Недостатки, которые следует учитывать

Теперь коснемся некоторых минусов. Кто и как бы себя ни нахваливал, он не сможет тягаться с настоящими профессионалами по электрической части. По этой простой причине надежность самодельного стабилизатора будет уступать фирменным аналогам. Обусловлено это тем, что на производстве используются высокоточные контрольно-измерительные приборы, которых нет у рядовых потребителей.

Другой момент – более широкий рабочий диапазон напряжения. Если у магазинного варианта он составляет от 215 до 220В, то у аппарата, созданного в домашних условиях, этот параметр будет превышен в 2 или даже 5 раз. А это уже критично для большого количества современной бытовой техники.

Комплектующие

Чтобы собрать по схеме электронный стабилизатор напряжения 220В своими руками, не обойтись без таких компонентов:

Также нужен будет паяльник и пинцет.

Особенности домашнего производства

Все элементы будут размещаться на печатной плате размером 115х90 мм. Для чего можно взять фольгированный стеклотекстолит. Схему расположения всех рабочих компонентов можно распечатать на лазерном принтере, а после перенести все, используя утюг. Сам пример ниже.

Теперь можно переходить к изготовлению трансформаторов. И здесь не все так просто. Всего нужно изготовить два элемента. Для первого нужно взять:

Причем один из проводов должен быть толщиной 0,064 мм, а другой – 0,185 мм. Для начала создается первичная обмотка с количеством витков – 8669. У последующих обмоток витков поменьше – 522.

Электрическая схема стабилизатора напряжения 220В предусматривает наличие двух трансформаторов. Поэтому после сборки первого элемента стоит переходить к изготовлению второго. А для этого уже нужен тороидальный магнитопровод. Обмотка здесь также делается из провода ПЭВ-2, разве что число витков будет равным 455. Кроме того, от второго трансформатора должны исходит семь отводов. Для первых трех нужен провод диаметром 3 мм, а остальные 4 будут из шин сечением 18 мм². Благодаря этому трансформатора не будет нагреваться во время использования стабилизатора.

Задачу можно существенно упростить, если взять два уже готовых элемента ТПК-2-2 12В и соединить их последовательно. Все прочие необходимые детали нужно приобрести в магазине.

Сборочный процесс

Сборка стабилизатора начинается с установки микросхемы на теплоотвод. Это может быть алюминиевая пластина площадью не менее 15 см2, на которой также следует расположить симисторы. Для эффективной работы стабилизатора не обойтись без микроконтроллера, для чего можно использовать микросхему КР1554ЛП5.

Конечно, это не схема инверторного стабилизатора напряжения 220В, но для бытовых нужд такого прибора вполне достаточно. На следующем этапе нужно расположить светодиоды, причем брать нужно мигающие. Однако можно использовать и прочие, к примеру, АЛ307КМ либо L1543SRC-Е, у которых яркое красное свечение. Если по какой-нибудь причине не удастся расположить их как того требует схема, можно разместить их в любом удобном месте.

Если кто-либо увлекался подобными сборками ранее, то собрать собственный стабилизатор не составит большого труда. Это не только обогащение опыта, но и существенная экономия, поскольку несколько тысяч рублей останутся нетронутыми.

Советы по монтажу

Некоторые полезные рекомендации, которые позволят правильно эксплуатировать самодельный стабилизатор. После того как устройство собрано, необходимо найти подходящее место, где будет обеспечено хорошая вентиляция.

Необходимо правильно реализовать схему подключения стабилизатора напряжения 220В для дома. И тут есть два способа:

  1. После счетчика – подходит, когда нужно защитить всю электросеть квартиры или дома. Непосредственно на выход от электросчетчика ставится автомат, а регулятор напряжения подключается уже к его выводу. К самому стабилизатору при необходимости тоже можно подключить автоматический выключатель.
  2. Подключение в розетку – в этом случае под защитой окажутся только те приборы, которые подключены к регулятору.

В процессе работы прибор будет греться, а тесное пространство не обеспечит должное охлаждение. В результате стабилизатор быстро выйдет из строя. Оптимальный вариант в этом случае – открытая площадка.

Если это невозможно в силу разных причин, специально для прибора можно соорудить нишу. При этом необходимо выдержать не менее 10 см от поверхности ниши до стенок стабилизатора. После сборки устройства стоит его проверить и обратить внимание на наличие каких-либо посторонних шумов.

После того как по схеме стабилизатор напряжения 220В своими руками успешно создан, не стоит думать, что на этом все заканчивается. Необходимо каждый год проводить профилактические работы, которые связаны с осмотром стабилизатора и перетяжкой контактов при необходимости. Только так можно быть уверенным в том, что самодельный «продукт» будет работать также эффективно, как и производственные аналоги.

В качестве заключения

Вне всякого сомнения, самостоятельное изготовление стабилизатора требует определенных знаний и навыков. Также нужно понимать, как именно работают такие устройства, и знать некоторые нюансы. Помимо этого, потребуется приобрести все необходимые комплектующие и выполнить правильный монтаж.

Возможно, вся работу для кого-то покажется сложной. Поэтому если нет уверенности в своих силах, то лучше пойти в магазин не за деталями, а за самим прибором. К тому же на все модели предусмотрен определенный гарантийный период.

fb.ru

Схема стабилизатора напряжения 220В для дома, принцип работы, монтаж

Как самостоятельно сделать стабилизатор напряжения 220В для дома — необходимые комплектующие и инструменты, схема, алгоритм сборки, видео. Содержание статьи:
  1. Принцип работы
  2. Схема, комплектующие и инструменты
  3. Монтаж
Изменение значений тока и напряжения в электросетях в сторону уменьшения или увеличения должно быть не более чем на 10 % от номинальных 220 В. Но в реальности скачки характеризуются большими изменениями, в связи с чем электроприборы, подключенные к сети напрямую, могут выходить из строя.Избежать неприятностей поможет использование специального оборудования. Но поскольку оно стоит недешево, многие предпочитают собирать стабилизатор напряжения для дома своими руками. Насколько оправдан такой шаг и что потребуется для его реализации? Об этом и поговорим!Стабилизатор напряжения состоит из нескольких основных деталей:
  1. Трансформатора.
  2. Конденсаторов.
  3. Резисторов.
  4. Кабеля для соединения элементов и подключения устройства.
Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно несколькими способами:
  1. Механическим. Он основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям. Приборы этого типа позволяют очень точно выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.
  2. Импульсным. Эти модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы. В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие — это идеальный выбор для дома.
Видео с подробным описанием принципа работы импульсного стабилизатора напряжения 220В:

Также стабилизаторы напряжения делятся на:Поскольку большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:Из инструментов понадобится паяльник и пинцет. Чтобы собрать стабилизатор напряжения 220В для дома своими руками, сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:Первый провод сечением 0,064 мм используется для создания первой обмотки. Число витков — 8669.Два оставшихся провода потребуются для выполнения двух других обмоток. Они отличаются от первого сечением 0,185 мм. Количество витков для этих обмоток — 522.Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.Если делать их самостоятельно, то для второго будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод сечением 3 мм, а для остальных — шины 18 кв. мм. Это поможет избежать нагревания трансформатора в процессе работы.Соединение двух трансформаторовВсе остальные комплектующие для прибора, создаваемого своими руками, лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке:
  1. Начинаем с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 кв. см.
  2. Далее монтируем симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.
  3. Затем устанавливаем на плату светодиоды (лучше выбирать мигающие). Если не получается расположить их согласно схеме, то размещаем на стороне, где находятся печатные проводники.
К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи. Кроме того, все детали для такого прибора можно купить в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.Если же сравнивать надежность стабилизатора напряжения 220В, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать производительную модель практически невозможно, так как нет специального измерительного оборудования.Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Для этого конечно придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант — покупка устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Видео с пошаговым монтажом стабилизатора напряжения 220В для дома:

Другие новости по теме:

tehnoobzor.com

Стабилизатор напряжения 220в, инверторный стабилизатор штиль

Для стабилизации силы тока в электросети используется электронное устройство с тиристорными или симисторными ключами. Современные пользователи отдают предпочтение устройству двойного преобразования инверторного типа. Высокоэффективный электронный инвертор подает электроток стабильного напряжения и определенной частоты с допустимым отклонением на 0,5% от заданных параметров.

Конструкция стабилизатора инверторного

Бытовой стабилизатор своими руками собрать несложно, для этого достаточно иметь входные фильтры, выпрямитель и корректор коэффициента входной мощности, конденсаторы, преобразователи и микроконтроллеры. Содержащиеся в конструкции выпрямители и преобразователи построены по схеме биполярного транзистора IGBT с металлическим оксидным полупроводником. Тиристоры в составе выравнивателя напряжения накапливают электрическую энергию, при активации устройства потери тока достигают минимальных показателей.

Инверторный стабилизатор содержит набор компонентов, каждый из которых выполняет определенную функцию. В конструкцию прибора входит:

  1. Блок питания с конденсаторами C 2 и C 5, компаратором DA 1, тепловым электрическим диодом VD 1, трансформатором T 1.
  2. Узел для задержки нагрузки при включении. В его комплектации содержатся резисторы R1-R5, транзисторы VT1-VT3 и конденсатор С1.
  3. Выпрямитель для измерения амплитуды колебания силы тока. В конструкцию устройства входит конденсатор С2, диод VD2, стабилитрон VD2 и делитель R14, R13.
  4. Компаратор с резисторами R15-R39 и компараторами DA3 и DA2.
  5. Логический контроллер DD1.
  6. Усилитель с транзистором VT4 и токоограничивающим резистором R40.
  7. Светодиод индикаторный HL1-HL9.
  8. Оптронные ключи.
  9. Автоматический предохранитель QF1.
  10. Трансформатор T 2.

Характеристики стабилизатора тока

Бытовой выпрямитель электротока, своими руками который можно собрать в частной мастерской, выравнивает ток при условии подачи тока 130−270 V. Аппарат не реагирует на частоту колебания электричества, поступающего из центральной линии электропередачи. К приспособлению можно подключать электроприборы общей мощностью до 6 кВт.

Электронный выравниватель напряжения в автоматическом режиме переключает нагрузки в течение 10 мсек. Принцип работы устройства заключается в осуществлении двух процессов:

  1. Преобразование переменного сетевого тока в потребительский постоянный.
  2. Преобразование потребительского постоянного тока в сетевой переменный.

При выполнении первого процесса инверторные стабилизаторы напряжения для дома осуществляют выпрямление и коррекцию коэффициента напряжения. Процессы выравнивания осуществляются в момент входа переменного тока в частотный фильтр стабилизатора. На выходе потребитель получает постоянный ток синусоидальной формы. Положительным фактором выпрямителя является создание тока с высокими коэффициентами мощности и накопление его в конденсаторах.

Инверторный стабилизатор напряжения для дома в конечном результате выдают электрический ток напряжением 220 В с частотой колебания 50 гц. Отличительным свойством инвертора является наличие в конструкции кварцевого генератора, обеспечивающего высокую точность преобразования исходного материала с помощью микроконтроллера. Благодаря двум взаимозаменяемым процессам выравнивания электротока инвертор, или стабилизатор двойного преобразования, имеет более высокие показатели по сравнению с приборами релейного, электромеханического и симисторного типа.

Свойства электронного стабилизатора

Автоматический стабилизатор напряжения с двойным преобразованием обладает высоким потенциалом, эффективность процесса выравнивания тока заключается в отсутствии реле и других подвижных компонентов. Важным элементом конструкции является конденсатор, в задачу которого входит нивелирование перепадов силы входящего тока. Двойной преобразователь не позволяет изменяться выходному электропитанию от перепада в электрической сети.

В процессе сборки стабилизатора напряжения своими руками следует учесть рабочий процесс бытового устройства при входном возбуждении 130 V. Логическая величина фиксируется компенсаторами прибора, открытый транзистор VT 4 включает сигнальный светодиод, свидетельствующий о том, что стабилизатор не выполняет свою задачу из-за отсутствия нагрузки.

Когда сила тока колеблется в пределах 130−150 В, характеристики инверторного стабилизатора напряжения штиль падает, система открывает транзистор VT 5, включает второй сигнальный светодиод, оптосимистор U1.2 и симистор VS2. Рабочая нагрузка передается на обмотку верхнего вывода трансформатора T 2.

Собранный в домашних условиях инверторный стабилизатор штиль способен передавать напряжение 220 В и переключать соединение с обмоткой второго трансформатора при скачке напряжения в сети от 190 до 250 В. Основным элементом инверторного стабилизатора штиль является печатная плата 115×90 мм из стеклотекстолита с односторонним покрытием фольгой.

Достоинства бытового выпрямителя

По конструкции и принципу действия стабилизатор с двойным преобразованием имеет ряд положительных свойств. Бытовой инвертор обладает следующими качествами, влияющими на производительность прибора:

  1. Расширенный показатель входного напряжения в пределах 115−300.
  2. Стабилизация выходного напряжения до 220 V в случае резкого скачка ток.
  3. Низкий порог шума при работе прибора.
  4. Компактные габариты корпуса и небольшая масса.
  5. Фильтрация высокочастотных помех и выбросов.
  6. КПД > 90%.
  7. Низкая точность нормализации входного напряжения.
  8. Оперативное регулирование силы электротока.
  9. Неприхотливость к обслуживанию и условию эксплуатации.

Недостатки стабилизирующего устройства

Наряду с достоинствами, электронный инверторный стабилизатор напряжения штиль обладает существенными недостатками. Среди комплекса отрицательных свойств наиболее важными считается:

  1. Высокая стоимость.
  2. Снижение диапазона входного напряжения.
  3. Чувствительность к перепадам напряжения в сети.

Условия работы прибора

В процессе преобразования тока необходимо защитить прибор от влаги, пыли, перегрева и механических повреждений. Устройство нельзя включать в работу, если в корпусе возникло образование конденсата от перепада температуры окружающей среды, для защиты стабилизатора от короткого замыкания необходимо дождаться полного испарения влаги с внутренних элементов оборудования.

Сделанный выпрямитель тока, изготовленный своими руками в частной мастерской, может эксплуатироваться только в сухих помещениях, где отсутствуют грызуны, насекомые, взрывоопасные и горючие материалы. Для стабилизации частоты колебания тока прибор должен устанавливаться на открытом пространстве, на расстоянии не менее 50 мм от стены, использоваться нулевой или фазный кабель.

obrabotkametalla.info

Стабилизатор напряжения 220в для дома своими руками схема

Бытовые устройства чувствительны к скачкам напряжения, быстрее подлежат износу, и появляются неисправности. В электрической сети напряжение часто изменяется, снижается, либо возрастает. Это взаимосвязано с отдаленностью источника энергии и некачественной линии питания.

Чтобы подключать приборы к устойчивому питанию, в жилых помещениях применяют стабилизаторы напряжения. На его выходе напряжение обладает стабильными свойствами. Стабилизатор можно приобрести в торговой сети, однако такой прибор можно изготовить своими руками.

Имеются допуски на изменение напряжения не более 10% от номинального значения (220 В). Это отклонение должно быть соблюдено как в большую сторону, так и в меньшую. Но идеальной электрической сети не бывает, и величина напряжения в сети часто меняется, усугубляя тем самым работу подключенных к ней устройств.

Электрические приборы отрицательно реагируют на такие капризы сети и могут быстро выйти из строя, потеряв при этом свои заложенные функции. Чтобы избежать таких последствий, люди применяют самодельные приборы под названием стабилизаторы напряжения. Эффективным стабилизатором стал прибор, выполненный на симисторах. Как сделать стабилизатор напряжения своими руками мы и рассмотрим.

Характеристика стабилизатора

Это устройство стабилизации не будет иметь повышенную чувствительность к изменениям напряжения, подающегося по общей линии. Сглаживание напряжения будет производиться в том случае, если на входе напряжение будет находиться в пределах от 130 до 270 вольт.

Включенные в сеть устройства будут питаться напряжением, имеющим величину от 205 до 230 вольт. От такого прибора можно будет питать электрические устройства, суммарная мощность которых до 6 кВт. Стабилизатор будет производить переключение нагрузки потребителя за 10 мс.

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками.

После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый. VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов.

Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться.

Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка.

Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход.

Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23. Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Стабилизатор напряжения и его особенности

Когда напряжение входа становится меньше 130 вольт, то на выходах компараторов появляется логический уровень малого размера. В этот момент транзистор VТ4 находится в открытом виде, первый светодиод мигает. Эта индикация сообщает о наличии низкого напряжения, что означает невозможность выполнения регулируемым стабилизатором своих функций.

Все симисторы закрытии и нагрузка отключена. Когда напряжение находится в пределах 130-150 вольт, то сигналы 1 и А имеют свойства высокого значения логического уровня. Такой уровень имеет низкое значение. В таком случае транзистор VТ5 открывается, и начинает сигнализировать второй светодиод.

Оптосимистор U1.2 открывается, так же, как и симистор VS2. Через симистор будет протекать нагрузочный ток. Затем нагрузка зайдет в верхний вывод катушки автотрансформатора Т2.

Если напряжение входа 150 – 170 В, то сигналы 2, 1 и В имеют повышенное значение логического уровня. Другие сигналы имеют низкий уровень. При таком напряжении входа транзистор VТ6 открывается, 3-й светодиод включается. В этот момент 2-й симистор открывается и ток поступает на второй вывод катушки Т2, являющийся 2-м сверху.

Собранный самостоятельно стабилизатор напряжения на 220 вольт будет соединять обмотки 2-го трансформатора, если уровень напряжения входа достигнет соответственно: 190, 210, 230, 250 вольт. Чтобы сделать такой стабилизатор, необходима печатная плата 115 х 90 мм, изготовленная из фольгированного стеклотекстолита.

Изображение платы можно отпечатать на принтере. Затем с помощью утюга переносят это изображение на плату.

Изготовление трансформаторов

Изготовить трансформаторы Т1 и Т2 можно самостоятельно. Для Т1, мощность которого 3 кВт, необходимо применить магнитопровод с поперечным сечением 1,87 см2, и 3 провода ПЭВ – 2. 1-й провод диаметром 0,064 мм. Им наматывают первую катушку, с количеством витков 8669. Другие 2 провода применяются для образования остальных обмоток. Провода на них должны быть одного диаметра 0,185 мм, с числом витков 522.

Чтобы не изготавливать самому такие трансформаторы, можно применить готовые варианты ТПК – 2 – 2 х 12 В, соединенные последовательно.

Чтобы изготовить трансформатор Т2 на 6 кВт, применяют магнитопровод тороидальной формы. Обмотку наматывают проводом ПЭВ – 2 с числом витков 455. На трансформаторе необходимо вывести 7 отводов. Первые 3 из них наматываются проводом 3 мм. Остальные 4 отвода наматываются шинами сечением 18 мм2. С таким сечением провода трансформатор не нагреется.

Отводы выполняют на таких витках: 203, 232, 266, 305, 348 и 398. Витки считают с нижнего отвода. В этом случае электрический ток сети должен поступать по отводу 266 витка.

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Достоинства и недостатки, отличия от заводских моделей

Если перечислять достоинства стабилизаторов, изготовленных самостоятельно, то основным достоинством является низкая стоимость. Производители приборов часто завышают цены, а своя сборка в любом случае обойдется меньшей стоимостью.

Другим преимуществом можно определить такой фактор, как возможность простого ремонта своими руками устройства, Ведь кто, если не вы знаете лучше устройство, собранное своими руками.

В случае поломки хозяин прибора сразу найдет неисправный элемент и заменит его на новый. Простая замена деталей создается таким фактором, что все детали приобретались в магазине, поэтому их можно будет легко снова купить в любом магазине.

Недостатком самостоятельно собранного стабилизатора напряжения необходимо выделить его сложную настройку.

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

Самодельный стабилизатор напряжения

ostabilizatore.ru

Стабилизатор своими руками: лучшие проекты и варианты проверки напряжения

Оптимальным способом работы электрических сетей считается изменение функций тока, а также требуемого напряжения на 10% от 220В. Однако так как скачки изменяются достаточно часто, соответственно электрическим устройствам, которые напрямую подсоединены к сети, угрожает поломка.

Чтобы исключить такие неприятности, необходимо установить определённое оборудование. А так как магазинное устройство имеет достаточно высокую стоимость, естественно многие собирают стабилизатор собственноручно.

Оправдано ли подобное решение и что требуется для воплощения его в реальность?

Принцип функционирования стабилизатора

Приняв решение создать самодельный стабилизатор, как на фото, нужно посмотреть во внутреннюю часть корпуса, которая состоит из определённых деталей. Принцип работы обычного прибора основан непосредственно на функционировании реостата, который увеличивает либо уменьшает сопротивление.

Кроме этого, предложенные модели имеют разнообразие функций, а также полностью могут обеспечить защиту технике от нежелательных перепадов скачущего напряжения в сети.

Оборудование классифицируется в зависимости от способов, применяемых для урегулирования тока. Так как величина является направленным продвижением частичек, соответственно влиять на неё можно механическим, либо импульсным методом.

Первый работает по закону Ома. Устройства, функционирование которых основано на нём, носят название линейные. В них включено несколько колен, совмещаемых посредством реостата.

Напряжение, которое подаётся на одну деталь, проходит посредством реостата, оказываясь подобным способом на другую, с которого передаётся потребителю.

Данного вида устройства дают возможность выставлять требуемые параметры тока максимально точно и вполне могут подвергнуться модернизации специальными узлами.

Однако недопустимо применять подобные стабилизаторы в сетях, где между током разница большая, поскольку они не обезопасят в полной мере от КЗ технику при перегрузках.

Варианты импульсные функционируют по методу амплитудной токовой модуляции. В цепи применяется выключатель, который её разрывает через необходимый период времени. Подобный подход даёт возможность накапливать необходимый ток в конденсаторе максимально равномерно, а по окончанию зарядки и затем на устройства.

Начинаем сборку

Так как к самому эффективному относится симисторный прибор, то поговорим, как собственными руками сделать непосредственно подобный стабилизатор.

Важно подчеркнуть, что данного типа модель сможет выравнивать подаваемый ток при таком условии, что напряжение в диапазоне 130-270 В. Потребуются также комплектующие элементы. Из инструментов нужен пинцет, а также паяльник.

Поэтапность изготовления

Согласно подробной инструкции, как смонтировать стабилизатор, прежде всего, следует подготовить требуемого размера плату печатную. Создаётся она из стеклотекстолита специального фольгированного. Микросхема расположения элементов может быть в напечатанном формате, либо перенесённой на плату посредством утюга.

Затем схемой создания простого стабилизатора предусмотрена непосредственно сборка прибора. Для данного элемента понадобится магнитопровод, несколько кабелей. Один провод диаметром в 0,064 мм применяется для изготовления обмотки. Количество требуемых витков достигает 8669.

Остальные два провода используют для создания оставшихся обмоток, характеризующиеся в сравнении с первым вариантом диаметром в 0,185 мм. Число обустраиваемых витков для данных обмоток равно не менее 522.

При необходимости упростить поставленную задачу предпочтительно воспользоваться последовательно соединяющимися трансформаторами марки ТПК-2-2 12В.

При самостоятельном производстве данных деталей по окончанию создания одной из них переходят к производству другой. В этих целях потребуется магнитопровод троидальный. В качестве обмотки подходит тоже ПЭВ-2 с числом витков 455.

К тому же пошаговым собственноручным изготовлением стабилизатора во втором приборе следует произвести 7 отводов. При этом для нескольких трёх применяется провод 3 мм в диаметре, для других используются шины 18 мм2 сечением. Это даст возможность исключить нежелательное нагревание устройства во время рабочего процесса.

Остальные элементы следует покупать в специализированной торговой точке. Как только всё нужное закуплено, следует собрать прибор.

Работы следует начинать с установки необходимой микросхемы, которая выступает в качестве контроллёра на обустраиваемый теплоотвод, производимый из платины. Помимо этого на него устанавливаются симисторы. Затем на плату монтируются светодиоды мигающие.

Если создание приборов симисторного для вас является сложной задачей, то рекомендуется остановиться на линейном варианте, характеризующемся подобными свойствами.

Фото стабилизаторов своими руками

tytmaster.ru

Схема стабилизатора напряжения 220в 10квт своими руками. Стабилизатор, стабилизация переменного сетевого напряжения. Импульсная схема. Своими руками. Наладка

22.10.2017

Исследовав источники и ряд сайтов в Интернете, я упростил стабилизатор переменного напряжения, описанный в статье . Число микросхем удалось сократить до четырёх, число оптосимисторных ключей — до шести. Принцип действия стабилизатора такой же, как у прототипа .

Основные технические характеристики стабилизатора напряжения:

Схема предлагаемого стабилизатора показана на рисунке. Устройство состоит из силового модуля и блока управления. Силовой модуль содержит мощный автотрансформатор Т2 и шесть ключей переменного тока, обведённых на схеме штрихпунктирной линией.

Остальные детали образуют блок управления. Он содержит семь пороговых устройств: I - DA2.1 R5 R11 R17, II -DA2.2 R6 R12 R18, III — DA2.3 R7 R13 R19, IV — DA2.4 R8 R14 R20, V — DA3.1 R9 R15 R21, VI — DA3.2 R10 R16 R22, VII -DA3.3 R23. На одном из выходов дешифратора DD2 присутствует напряжение высокого уровня, которое вызывает включение соответствующего светодиода (одного из HL1 — HL8).

Мощный автотрансформатор Т2 включён иначе, чем в прототипе. Напряжение сети подаётся на один из отводов обмотки или на обмотку целиком через один из симисторов VS1—VS6, а нагрузка подключена к одному и тому же отводу. При таком включении расходуется меньше провода на обмотку автотрансформатора.

Напряжение обмотки II трансформатора Т1 выпрямляют диоды VD1, VD2 и сглаживает конденсатор С1. Выпрямленное напряжение пропорционально входному. Оно используется как для питания блока управления, так и для измерения входного напряжения сети. С этой целью оно подаётся на делитель R1—R3. С движка подстроечного резистора R2 поступает на неинвертирующие входы операционных усилителей DA2.1 —DA2.4, DA3.1—DA3.3. Эти ОУ используются в качестве компараторов напряжения. Резисторы R17—R23 создают гистерезис переключения компараторов.

В таблице ниже показаны пределы изменения выходного напряжения Uвых и логические уровни напряжения на выходах операционных усилителей и входах дешифратора DD2, а также включённые светодиоды в зависимости от входного напряжения Uвх без учёта гистерезиса.

Микросхема DA1 вырабатывает стабильное напряжение 12 В для питания остальных микросхем. Стабилитрон VD3 вырабатывает образцовое напряжение 9 В. Оно подаётся на инвертирующий вход ОУ DA3.3. На инвертирующие входы других ОУ оно поступает через делители на резисторах R5—R16.

При сетевом напряжении ниже 135 В напряжение на движке резистора R2, а значит, и на неинвертирующих входах ОУ меньше, чем на инвертирующих. Поэтому на выходах всех ОУ низкий уровень. На всех выходах микросхемы DD1 также низкий уровень. В этом случае появляется высокий уровень на выходе О (вывод 3) дешифратора DD2. Включён светодиод HL1, показывая слишком низкое напряжение сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

При напряжении сети от 135 до 155 В напряжение на движке резистора R2 больше, чем на инвертирующем входе DA2.1, поэтому на его выходе высокий уровень. На выходе элемента DD1.1 также высокий уровень. В этом случае появляется высокий уровень на выходе 1 (вывод 14) дешифратора DD2 (см. таблицу). Светодиод HL1 гаснет. Включается светодиод HL2, течёт ток через излучающий диод оптрона U6, вследствие чего оптосимистор этого оптрона открывается. Через открытый симистор VS6 напряжение сети подаётся на нижний по схеме отвод (вывод 6) относительно начала обмотки (вывода 7) автотрансформатора Т2. Напряжение на нагрузке больше напряжения сети на 64…71 В.

При дальнейшем повышении напряжения сети оно будет переключаться на следующий вверх по схеме вывод автотрансформатора Т2. В частности, напряжение сети от 205 до 235 В непосредственно поступает на нагрузку через открытый симистор VS2, а также на выводы 1—7 автотрансформатора Т2.

При напряжении сети от 235 до 270 В на выходах всех ОУ, кроме DA3.3, высокий уровень, ток течёт через светодиод HL7 и излучающий диод U1.2. Напряжение сети через открытый симистор VS1 подключено ко всей обмотке автотрансформатора Т2. Напряжение на нагрузке меньше напряжения сети на 24…28 В.

При напряжении сети более 270 В на выходах всех ОУ высокий уровень, а ток течёт через светодиод HL8, который сигнализирует о чрезмерно высоком напряжении сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

Маломощный трансформатор Т1 аналогичен применённому в прототипе, за исключением того, что его вторичная обмотка содержит 1400 витков с отводом от середины. Мощный автотрансформатор Т2 — готовый от промышленного стабилизатора VOTO 5000 Вт. Отмотав вторичную обмотку и часть первичной, я сделал новые отводы, считая от начала обмотки (вывода 7): вывод 6 от 215-го витка (150 В), вывод 5 от 236-го витка (165 В), вывод4 от 257-го витка (180 В), вывод 3 от 286-го витка (200 В), вывод 2 от 314-го витка (220 В). Вся обмотка (выводы 1—7) имеет 350 витков (245 В).

Постоянные резисторы — С2-23 и ОМЛТ, подстроечный резистор R2 — С5-2ВБ. Конденсаторы С1 —СЗ— К50-35, К50-20. Диоды (VD1, VD2) можно заменить на — , КД243Б— КД243Ж.

Микросхему можно заменить отечественными аналогами КР1157ЕН12А, КР1157ЕН12Б.

Налаживание выполняют с помощью ЛАТРа. Вначале устанавливают пороги переключения. Для достижения более высокой точности установки резисторы R17—R23, создающие гистерезис, не устанавливают. Мощный автотрансформатор Т2 не подключают. Устройство подключают к сети через ЛАТР. На выходе ЛАТРа устанавливают напряжение 270 В. Перемещают движок подстроечного резистора R2 снизу вверх по схеме до включения светодиода HL8. Далее на выходе ЛАТРа устанавливают напряжение 135 В. Подбирают резистор R5 так, чтобы напряжение на инвертирующем входе (вывод 2) ОУ DA2.1 было равно напряжению на его неинвертирующем входе (вывод 3). Затем последовательно подбирают резисторы R6…R10, устанавливая пороги переключения 155 В, 170 В, 185 В, 205 В, 235 В, сверяя логические уровни с таблицей. После этого устанавливают резисторы R17— R23. В случае необходимости подбирают их сопротивления, устанавливая необходимую ширину петли гистерезиса. Чем больше сопротивление, тем меньше ширина петли. Установив пороги переключения, подключают мощный автотрансформатор Т2, а к нему нагрузку, например, лампу накаливания мощностью 100…200 Вт. Проверяют пороги переключения и измеряют напряжение на нагрузке. После налаживания светодиоды HL2—HL7 можно удалить, заменив их перемычками.

ЛИТЕРАТУРА:

1. Годин А. Стабилизатор переменного напряжения. - Радио, 2005, № 8. 2. Озолин М. Усовершенствованный блок управления стабилизатора переменного напряжения. - Радио, 2006, № 7.

Подаваемая в наши дома электроэнергия не отличаются стабильностью. Если частота еще более-менее стабильна, то напряжение «гуляет» в значительном диапазоне. Единственное, что можно с этим сделать — поставить стабилизатор напряжения для дома, квартиры, дачи. Тогда в вашем, отдельно взятом «куске» сети все будет хорошо (если электрический стабилизатор правильно выбрать).

Выбор по техническим характеристикам

Чтобы выбрать стабилизатор, сначала определитесь, будете вы его ставить на весь дом/квартиру или на какое-то определенное устройство(группу устройств). По идее, если есть проблемы с напряжением, лучше поставить стабилизатор напряжения для дома на входе, чтоб все устройства получали гарантированно нормальное напряжение. Но такое оборудование стоит довольно солидных денег — не менее 500$. Так что расходы немалые. Такой подход оправдан, если броски значительные, то это — лучший выход, так как техника может выйти из строя.

Локальные и общие стабилизаторы — первое с чем надо определиться

Если напряжение «гуляет» в небольших пределах и большая часть техники работает нормально, а проблемы есть только у какой-то части более чувствительной аппаратуры, имеет смысл поставить локальные стабилизаторы — на конкретные линии или на отдельные устройства.

По количеству фаз

Питание в доме может быть однофазным и трехфазным. С однофазными (на 220 В) все ясно: нужен однофазный стабилизатор. Если в доме/квартире три фазы, есть варианты:

Выбрать стабилизатор напряжения для дома или дачи по этому принципу несложно. Но определиться надо обязательно.

Выбор мощности

Чтобы выбрать стабилизатор напряжения для дома, первым делом надо рассчитать его мощность. Проще всего ее определить по автомату, который стоит на доме или линии. Например, входной автомат стоит на 40 А. Рассчитываем мощность: 40 А * 220 В = 8,8 КВа. Чтобы агрегат не работал на пределе возможностей, берут запас по мощности 20-30%. Для данного случая это будет 10-11 КВа.

Также рассчитывается мощность локального стабилизатора, который ставим на отдельный прибор. Но тут в расчет берем максимальный потребляемый ток (есть в характеристикам). Например, это 2,5 А. Далее считаем по описанному выше алгоритму. Но если в оборудовании есть мотор (холодильник, например), то надо учитывать пусковые токи, которые в разы превышают нормативные. В этом случае рассчитанные параметры умножают на 2 или 3.

При подборе мощности не путайте кВА с кВт. Если коротко, то 10 кВА при наличии на нагрузке емкостей и индуктивностей (то есть для реальных сетей практически всегда) не равны 10 кВт. Цифра реальной нагрузки меньше, а насколько меньше — зависит от коэффициента индуктивности (может также быть в характеристиках). Под конкретный прибор рассчитать все просто — надо умножить на коэффициент, а вот для сети все сложнее. Просто если видите цифру в кВА, берите запас порядка 15-20%. Примерно такова реактивная составляющая в среднем.

Точность стабилизации

Точность стабилизации показывает, насколько «ровным» будет напряжение на выходе. Приемлемым считается +-5%. С таким допуском нормально работает отечественная техника, а вот для импортной надо лучше стабилизированное напряжение. Итак, все стабилизаторы, которые имеют точность меньше +-5% — это замечательно, все что хуже — лучше не покупать.

Точность стабилизации — один из первых параметров, на которые надо обратить внимание

Диапазон входного напряжения: предельный и рабочий

В характеристиках есть две строчки: предельный диапазон входного напряжения и рабочий. Это две разные характеристики, которые отображают разные параметры устройства. Предельный диапазон — это тот, при котором устройство будет хоть как-то корректировать напряжение. Оно не всегда вытянет его до нормы, но хотя-бы не отключится.

Рабочий диапазон входного напряжения — это, как раз, тот разбег, при котором устройство должно выдавать заявленные параметры (с той самой точностью стабилизации).

Нагрузочная и перегрузочная способность

Очень важная характеристика, на которую надо обязательно обращать внимание. Нагрузочная способность показывает какую нагрузку может «потянуть» стабилизатор напряжения для дома при работе на нижней границе. Есть такие модели, которые выдают заявленную мощность на 220 В. То есть тогда, когда она совсем не нужна. А вот на нижнем пределе в 160 В могут работать только с половинной нагрузкой. Результат — работая при пониженном напряжении он может перегореть. Даже если вы взяли его с запасом мощности.

Перегрузочная способность не менее важна. Она показывает, как долго может он работать с превышением нагрузки. Параметр важен даже если оборудование вы брали с хорошим запасом по мощности. По этому параметру можно опосредованно определить качество деталей и качество сборки. Чем выше перегрузочная способность, тем более надежно оборудование.

Виды, плюсы, минусы

Стабилизаторы напряжения есть разных видов, делают их из компонентов разного типа — электромеханических, электронных. Часть из них имеет электро-механическое управление, часть-электронное. Чтобы правильно подобрать оборудование, надо иметь представление о достоинствах и недостатках.

Видов и типов стабилизаторов напряжения для дома много….

Электронные (симисторные)

Собираются на симисторах или термисторах. Имеют несколько ступеней регулировки, которые подключаются/отключаются в зависимости от входного напряжения. Переключение может происходить при помощи электронного ключа (работает бесшумно, но это более дорогие модели) или электронного реле (при срабатывании есть звук).

К плюсам электронных стабилизаторов относят высокую скорость реакции (время включения одной ступени около 20 мсек). Электронные ключи срабатывают очень быстро, подключая нужное количество ступеней коррекции или отключая их. Второй положительный момент — тихая работа. Шуметь тут нечему — работает электроника.

Минусы тоже есть. Первый — низкая точность стабилизации. В этой категории вы не найдете моделей, который выдают напряжение с погрешностью менее 2-3%. Это просто невозможно, так как регулировка ступенчатая и погрешность довольно высока. Второй недостаток — высокая цена. Симисторы стоят немало, а их столько, сколько ступеней. То есть, чем больше ступеней и вше точность регулировки, тем дороже будет оборудование.

Электромеханические

Собираются на основе электромагнитной катушки, по которой бегает бегунок. Положение бегунка изменяется при помощи мотора или реле. Плюс электромеханического стабилизатора — невысокая цена и высокая точность стабилизации. Недостаток — низкое быстродействие — параметры меняются медленно. Второй минус — довольно громкая работа.

Аппараты с мотором работают тише, но корректировка происходит медленно. Среднее время реакции — 20 В за 0,5 секунды. При резких скачках аппарат просто не успевает изменять напряжение. Есть у стабилизаторов этого типа еще одна неприятность — перенапряжение. Возникает, в той ситуации, когда ранее упавшее напряжение резко приходит в норму. Стабилизатор не успевает среагировать, в результате на выходе имеем скачок, прием бывает он до 260 В, а это губительно для техники. Для того чтобы избежать подобной ситуации, на выходе ставят защиту по напряжению (автомат по напряжению), который просто отключает питание.

Электро-механические — недорогие, надежные, но с малой скоростью коррекции

Если электромеханический стабилизатор напряжения для дома собран на основе реле, время срабатывания меньше, но при работе они шумят, да и регулировка не плавная а ступенчатая. Это значит, что они имеют более низкую точность стабилизации. Зато нет перенапряжения и нет необходимости думать о дополнительной защите. Чтобы не путаться, эти устройства называют релейные стабилизаторы именно так они описаны в большинстве случаев.

Есть и еще один не самый приятный момент у электромеханических стабилизаторов напряжения для дома или квартиры: они быстрее изнашиваются, требуют регулярной профилактики (раз в пол года).

Феррорезонансные

Это самые громоздкие из стабилизаторов. Имеют малое время отклика, высокую надежность и стойкость к помехам. Коэффициент стабилизации средний (порядка 3-4%), что неплохо.

Но на выходе напряжение имеет искаженную форму (не синусоида), работа зависит от изменений частоты в сети, отличается большой массой и габаритами. Обычно используется как первая ступень стабилизации, если одним устройством добиться нормального напряжения не получается.

Инверторные

Это один из видов электронных приборов, но его работа и внутреннее устройство очень сильно отличаются от описанных выше, потому эта группа рассматривается отдельно.

В инверторных стабилизаторах напряжения происходит двойное преобразование сначала переменный ток превращается в постоянный, затем обратно в переменный, который подается на корректор коэффициента мощности, где и происходит его стабилизация. В результате на выходе имеем идеальную синусоиду со стабильными параметрами.

Инверторный стабилизатор напряжения для дома это, пожалуй, лучший на сегодня выбор. Вот его плюсы:

По цене это не самое дорогое оборудование — стоят они примерно столько же, сколько и релейные и почти в два раза ниже электронных. При этом качество преобразования у инверторных агрегатов намного выше.

Недостаток у этого оборудования один: при работе элементы сильно греются. Для охлаждения в корпус встраиваются вентиляторы, которые издают негромкое жужжание. Если стабилизатор напряжения выбираете для квартиры, ставят его обычно в коридоре, так что шум может быть слышен. В частных домах возможностей по выбору места установки больше, так что вполне реально найти такое, где шум мешать не будет.

Какой стабилизатор лучше

Говорить от том, что какой-то тип стабилизатора лучше, а какой-то хуже не имеет смысла. У каждого есть свои достоинства и недостатки, каждый в какой-то ситуации, под определенные требования — лучший выбор.

Давайте рассмотрим типичные ситуации, с которыми многие сталкиваются:

Ситуаций на самом деле очень много. Но в любом случае подбирать тип стабилизатора напряжения для дома надо исходя их существующей проблемы. Далее уже в выбранной категории выбирать по параметрам.

Выбор производителя и цены

Самое непростое — выбрать производителя. Стазу стоит сказать, что китайские агрегаты лучше не рассматривать. Даже с теми, которые китайские только наполовину (с вынесенным в поднебесную производством и головным офисом в другой стране) надо быть очень аккуратными. Качество не всегда стабильно.

Если вам не важна внешняя составляющая, обратите внимание на стабилизаторы российского или белорусского производства. Это Штиль и Лидер. Вполне приличные агрегаты, с не очень хорошим дизайном, но со стабильным качеством.

Если вам нужна идеальная аппаратура, ищите итальянские ORTEA. У них и качество сборки, и внешний вид на высоте. Также неплохие отзывы у РЕСАНТА. Их товар оценивают на 4-4,5 по пятибалльной шкале.

Несколько примеров стабилизаторов разного типа мощностью 10-10,5 кВт с характеристиками и ценами приведены в таблице. Смотрите сами.

Название Тип Рабочее входное напряжение Точность стабилизации Тип размещения Цена Оценка пользователей по 5-балльной шкале Примечания
RUCELF SRWII-12000-L релейный 140-260 В 3,5% настенный 270$ 4,0
RUCELF SRFII-12000-L релейный 140-260 В 3,5% напольное 270$ 5,0
Энергия Hybrid СНВТ-10000/1 гибридный 144-256 В 3% напольное 300$ 4,0 на выходе идеальная синусоида, защита от короткого замыкания, от перегрева, от повышенного напряжения, от помех
Энергия Voltron PCH-15000 релейный 100-260 В 10% напольное 300$ 4,0
RUCELF SDWII-12000-L электромеханический 140-260 В 1,5% настенное 330$ 4,5
РЕСАНТА ACH-10000/1-ЭМ электромеханический 140-260 В 2% напольное 220$ 5.0
РЕСАНТА LUX АСН-10000Н/1-Ц релейный 140-260 В 8% настенное 150$ 4,5 синусоида без искажений Защита
РЕСАНТА ACH-10000/1-Ц релейный 140-260 В 8% напольное 170$ 4.0 синусоида без искажений Защита

от короткого замыкания, от перегрева, от повышенного напряжения, от помех

Otea Vega 10-15 / 7-20 электронный 187-253 В 0,5% напольное 1550$ 5,0
Штиль R 12000 электронный 155-255 В 5% напольное 1030$ 4,5
Штиль R 12000C электронный 155-255 В 5% напольное 1140$ 4.5
Энергия Classic 15000 электронный 125-254 В 5% настенное 830$ 4,5
Энергия Ultra 15000 электронный 138-250 В 3% настенное 950$ 4,5
СДП-1/1-10-220-Т электронный инверторный 176-276 В 1% напольное 1040$ 5 синусоида без искажений

Разброс цен поражает, но типы оборудования тут собраны самые разные — от бюджетных релейных и электромеханических до супер-надежных электронных.

Проблемы стабилизации сетевого напряжения

Качество электроснабжения в наших изношенных и перегруженных сетях оставляет желать лучшего. Напряжение может изменяться в широких пределах, что не полезно для бытовых приборов. Некоторые из них просто не могут работать в таких условиях, другие - быстрее выходят из строя. Для решения проблемы обычно используются стабилизаторы переменного напряжения.

Наиболее популярными в настоящее время являются стабилизаторы, работа которых основана на анализе входного напряжения и переключении обмоток трансформатора таким образом, чтобы выходное напряжение поддерживалось в допустимых пределах. Если сетевое напряжение изменяется редко, то такой подход идеален. Действительно, система адаптировалась к определенному входному напряжению и работает себе спокойно. Если напряжение изменилось, то стабилизатор переключается и продолжает работать. Но в наших сетях напряжение зачастую скачет. В этом случае стабилизаторы, выполненные по такой технологии, начинают постоянно переключаться. Каждое переключение - это стресс для самого стабилизатора, для Ваших приборов, подключенных к нему (при переключении возникает резкий перепад напряжения и короткое полное прерывание тока) и для Вас самих (переключение обычно сопровождается морганием света).

Вашему вниманию подборки материалов:

В схему источника синусоидального напряжения внесены следующие изменения: Во-первых , применен более совершенный и надежный генератор синусоидальных колебаний. VD1, VD2 - стабилитроны на 3.6 вольта, включенные встречно последовательно. Во-вторых , исключена схема выпрямления и фильтрации входного напряжения, так как нижний блок уже выдает постоянное стабильное напряжение. В-третьих , исключена схема выработки низкого напряжения для питания схемы управления. Эта схема реализована в нижнем блоке, напряжение от нее подается на схему управления, в том числе, верхнего блока.

Мощность изделия ограничена мощностью его составных частей. Как увеличить мощность этих устройств , читайте по ссылке.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

Уважаемые любители электронных самоделок, изготовил я печатные платы прямо на п ринтере р220 для импульсного стабилизатора переменного напряжения, если кому интересно могу поделится опытом изготовления плат на принтере. Спаял на плате детали и думал что всё это начнёт сразу работать. Но оказалась, что частота генератора не 50 герц а 150 с теми номиналами С4.С6 по 0.1 мкФ. Пришл

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука... Включение светодиодов в светодиодном фонаре....

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. ... Схема преобразователя однофазного напряжения в трехфазное....

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму... Схема импульсного зарядного устройства. Расчет на разные напряжения и токи....

Тиристорное переключение нагрузки, коммутация (включение / выключение)... Применение тиристоров в качестве реле (переключателей) напряжения переменного то...

Повышающие переменное, постоянное напряжение бестрансформаторные преоб... Повышение напряжения без трансформатора. Умножители. Рассчитать онлайн. Преобраз...

Резонансный инвертор, преобразователь напряжения повышающий. Схема, ко... Инвертор 12/24 в 300. Резонансная схема....

Чтобы приобрести без ошибок стабилизатор напряжения 220В для дома, какой выбрать из предложенных на рынке надо выяснить заранее. Личные знания помогут точнее формулировать свои требования, беседовать с продавцом на равных. Пригодится также изучение актуальных предложений рынка в соответствующем сегменте.

Современный стабилизатор

Стабилизатор напряжения 220В для дома: какой выбрать набор оборудования

Современный жилой дом оснащен разнообразной техникой с питанием от электрической сети. Это оборудование будет выполнять свои функции полноценно, если параметры напряжения стабильны. Для решения такой задачи во входной цепи устанавливают специальные устройства. Они автоматически фиксируют выход показателей из нормального диапазона и делают необходимые коррекции самостоятельно.

Не сложно описать качественный стабилизатор напряжения 220В для дома, какой выбрать будет решить не сложно с помощью следующих критериев:

Для чего нужна стабилизация напряжения

Чтобы исключить сомнения в необходимости таких инвестиций надо открыть любой технический паспорт на бытовую технику. В соответствующей строке указано номинальное напряжение питания с допустимыми отклонениями (например: ±10%). Если напряжение выходит за пределы указанного диапазона, производитель вправе снять свои гарантийные обязательства.

По действующим в настоящее время правилам сложно предъявить претензии, а точнее – получить компенсацию ущерба. Отечественные обслуживающие организации иногда проводят работы вовсе без предварительного предупреждения. Снижение напряжения происходят при подключении большого количества кондиционеров летом. Соответствующие скачки наблюдаются вечером, когда готовят пищу, зимой в процессе эксплуатации мощных нагревательных приборов. Определенное негативное влияние оказывает несовершенство оборудования питающей подстанции, ее недостаточная мощность.

Перечисленные выше факторы убеждают в том, что обычный владелец частного дома исключить их не способен. Но он может установить стабилизатор. Такое решение поможет:

Виды специализированного оборудования

Чтобы приобрести стабилизатор напряжения 220В для домашнего использования, надо выяснить, какой выбрать механизм изменения напряжения. Чаще всего используются следующие схемы:

Все они подсоединяют разные выходные обмотки трансформатора при изменении напряжения на входе.

С помощью этой схемы можно рассмотреть подробнее принципы действия этого устройства:

Тиристоры работают быстро, но создают искажения. В некоторых ситуациях не исключено существенное изменение форы выходного сигнала. Это способно вызвать сбои в работе потребителей. Также образуются электромагнитные помехи. Следует отметить значительную стоимость качественных тиристоров большой мощности.

Как ни странно, но исключить перечисленные недостатки можно с помощью реле. Они не создают искажения, переключаются с достаточно высокой скоростью. Некоторые современные изделия такого типа работают практически бесшумно без повреждений в течение многих лет при постоянном использовании стабилизатора.

Следующий вариант – перемещение контактора с применением электромеханического привода. Такое инженерное решение позволяет обеспечить плавную регулировку и высокую точность. Однако здесь используют сложные механизмы, которые необходимо периодически обслуживать. Некоторые из них не стабильно работают при снижении температуры воздуха ниже 0°C. Стоит отметить наличие шумов и ограниченную скорость изменения электрических параметров.

Феррорезонансные преобразователи создают с применением нескольких индукционных катушек. Они отличатся быстротой реакции, долговечностью. Но следующие отрицательные параметры существенно ограничивают сферу их применения:

Именно поэтому чаще применяют три перечисленные выше схемы с учетом необходимой мощности и напряжения в сети (220V, или 380V).

Разные схемы подключения стабилизатора напряжения в частном доме

В коттеджах нередко предпочитают использование трехфазных сетей 380. Как правило, они рассчитаны на большие нагрузки. Некоторые станки, нагреватели рассчитаны именно на такое питание. Но для оснащения дома вполне достаточно приобрести двухфазные стабилизаторы.

Статья по теме:

Изучаем наш рейтинг популярных моделей и выбираем лучший для вашего дачного участка. Приятного чтения!

Как самостоятельно сделать регулирующее устройство

Для изготовления повышающего стабилизатора напряжения своими руками 220В можно использовать проверенное фабричное изделие.

Понадобится приобрести комплектующие детали по розничным ценам, создать печатные платы, корпус.

Работающую качественную схему стабилизатора напряжения 220В своими руками создать будет дороже, чем приобрести готовое изделие с заводской гарантией.

Стабилизаторы напряжения 220В для дома: цены и технические характеристики

Если решите купить стабилизатор напряжения 220В для дома на 10кВт, то надо понимать, что его возможностей хватит на меньшую суммарную мощность всех потребителей. Дело в том, что при включении индукционных нагрузок она резко возрастает. Для подключения электропривода 0,5 кВт понадобится мощность примерно в 2 раза больше. Итоговый результат рекомендуется увеличить еще на 25-30%, чтобы стабилизатор не работал на предельных нагрузках. Данные по нескольким фабричным моделям техники приведены в таблице.

Изображение Модель/ Торговая

марка

Полная/ эффек- тивная мощ- ность,

VA/Вт

Напря- жение на входе,

V

Выход- ной ток, макси-

мальный, А

Стабилизи- рованное напряжение

на выходе, V

Цена, руб.
AVR SLIM-500 LCD/ SVEN 500/ 400 140- 260 5 220 2900- 3200
AVR PRO LCD 10000/ SVEN 10000/ 8000 140- 260 63 220 9200- 10300
AVS 10000M/ Powerman 10000 130- 275 50 (входной ток) 202- 237 9500- 10680

Выводы

Какой лучше стабилизатор напряжения, релейный или электромеханический, однозначно сказать нельзя. Чтобы сделать правильный вывод, надо сравнить параметры двух моделей с учетом изложенных выше сведений. Для уменьшения требований можно только часть оборудования подключить через систему стабилизации.

Как выбрать стабилизатор напряжения для дома? (видео)

Возможно Вам также будет интересно:

Стабилизатор напряжения 220в для дачи какой выбрать? Советы и практические рекомендации

Напряжение сети, особенно в сельской местности, нередко выходит за пределы, допустимые для питаемой аппаратуры, что приводит к ее выходу из строя.

Избежать столь неприятных последствий возможно с помощью стабилизатора, который поддерживает выходное напряжение в необходимых пределах для нагрузки, а если это невозможно - отключает ее.

Предлагаемое устройство относится к весьма перспективным конструкциям, в которых нагрузка автоматически подключается к соответствующему отводу обмотки автотрансформатора в зависимости от текущего значения напряжения сети.

Годин А.В. Стабилизатор переменного напряжения

Журнал «РАДИО». 2005. №08 (с.33-36) Журнал «РАДИО». 2005. №12 (с.45) Журнал «РАДИО». 2006. №04 (с.33)

Из-за нестабильности напряжения в сети в Подмосковье вышел из строя холодильник. Проверка напряжения в течение дня выявила его изменения от 150 до 250 В. Как следствие, занялся вопросом приобретения стабилизатора. Знакомство с ценами на готовые изделия повергло в шок. Стал искать схемы в литературе и Интернет.

Почти подходящий по параметрам стабилизатор с микроконтроллерным управлением описан в . Но его выходная мощность недостаточно высока, переключение нагрузки зависит не только от амплитуды, но и от частоты напряжения сети. Поэтому было решено создать собственную конструкцию стабилизатора, не обладающую этими недостатками.

В предлагаемом стабилизаторе не использован микроконтроллер, что делает его доступным для повторения более широкому кругу радиолюбителей. Нечувствительность к частоте напряжения сети позволяет его использовать в полевых условиях, когда источником электроэнергии является автономный дизель-генератор.

Основные технические характеристики

Входное напряжение, В: 130…270 Выходное напряжение, В: 205…230 Максимальная мощность нагрузки, кВт: 6

Время переключения (отключения) нагрузки, мс: 10

Устройство содержит следующие узлы: Блок питания на элементах T1, VD1, DA1, C2, C5. Узел задержки включения нагрузки C1, VT1-VT3, R1-R5. Выпрямитель для измерения амплитуды напряжения сети VD2, C2 с делителем R13, R14 и стабилитроном VD3. Компаратор напряжения DA2, DA3, R15-R39. Логический контроллер на микросхемах DD1-DD5. Усилители на транзисторах VT4-VT12 с токоограничительными резисторами R40-R48. Индикаторные светодиоды HL1-HL9, семь оптронных ключей, содержащих оптосимисторы U1-U7, резисторы R6-R12, симисторы VS1-VS7. Напряжение сети подключено к соответствующему отводу обмотки автотрансформатора T2 через автоматический выключатель-предохранитель QF1. Нагрузка подключена к автотрансформатору T2 через открытый симистор (один из VS1-VS7).

Стабилизатор работает следующим образом. После включения питания конденсатор C1 разряжен, транзистор VT1 закрыт, а VT2 открыт. Транзистор VT3 закрыт, а так как ток через светодиоды, в том числе входящие в состав симисторных оптронов U1-U7, может протекать только через этот транзистор, то ни один светодиод не горит, все симисторы закрыты, нагрузка отключена. Напряжение на конденсаторе C1 возрастает по мере его зарядки от источника питания через резистор R1. По окончании трехсекундного интервала задержки, необходимого для завершения переходных процессов, срабатывает триггер Шмидта на транзисторах VT1 и VT2, транзистор VT3 открывается и разрешает включение нагрузки.

Напряжение с обмотки III трансформатора T1 выпрямляется элементами VD2C2 и поступает на делитель R13, R14. Напряжение на движке подстроечного резистора R14, пропорциональное напряжению сети, поступает на неинвертирующие входы восьми компараторов (микросхемы DA2,DA3). На инвертирующие входы этих компараторов поступают постоянные образцовые напряжения с резисторного делителя R15-R23. Сигналы с выходов компараторов обрабатывает контроллер на логических элементах «исключающее ИЛИ» (микросхемы DD1-DD5). На линии групповой связи рис. выходы компараторов DA2.1-DA2.4 и DA3.1-DA2.3 обозначены цифрами 1-7, а выходы контроллера - буквами A-H. Выход компаратора DA3.4 не входит в линию групповой связи.

Если напряжение сети меньше 130 В, на выходах всех компараторов и выходах контроллера низкий логический уровень. Транзистор VT4 открыт, включен мигающий светодиод HL1, индицирующий чрезмерно низкое напряжение сети, при котором стабилизатор не может обеспечить питание нагрузки. Все остальные светодиоды погашены, симисторы закрыты, нагрузка отключена.

Если напряжение сети меньше 150 В, но больше 130 В, логический уровень сигналов 1 и A высокий, остальных - низкий. Транзистор VT5 открыт, горят светодиоды HL2 и U1.1, оптосимистор U1.2 открыт, нагрузка соединена с верхним по схеме выводом обмотки автотрансформатора T2 через открытый симистор VS1.

Если напряжение сети меньше 170 В, но больше 150 В, логический уровень сигналов 1, 2 и B высокий, остальных - низкий. Транзистор VT6 открыт, горят светодиоды HL3 и U2.1, оптосимистор U1.2 открыт, нагрузка соединена со вторым сверху по схеме выводом обмотки автотрансформатора T2 через открытый симистор VS2.

Остальные уровни напряжения сети, соответствующие переключению нагрузки на другой отвод обмотки автотрансформатора T2: 190, 210, 230 и 250 В.

Для предотвращения многократного переключения нагрузки, в случае, когда напряжение сети колеблется на пороговом уровне, введен гистерезис 2-3 В (запаздывание переключения компараторов) с помощью положительной обратной связи через R32-R39. Чем больше сопротивления этих резисторов, тем меньше гистерезис.

Если напряжение сети больше 270 В, на выходах всех компараторов и выходе H контроллера высокий логический уровень. На остальных выходах контроллера -низкий уровень. Транзистор VT12 открыт, включен мигающий светодиод HL9, индицирующий чрезмерно высокое напряжение сети, при котором стабилизатор не может обеспечить питание нагрузки. Все остальные светодиоды погашены, симисторы закрыты, нагрузка отключена.

Стабилизатор выдерживает неограниченное время аварийное повышение напряжения сети до 380 В. Надписи, индицируемые светодиодами, аналогичны описанным в .

Вариант с одним трансформатором питания

Конструкция и детали

Стабилизатор собран на печатной плате 90х115 мм из одностороннего фольгированного стеклотекстолита.

Светодиоды HL1-HL9 смонтированы так, чтобы при установке печатной платы в корпус они попали в соответствующие отверстия на передней панели устройства.

В зависимости от конструкции корпуса, возможен вариант монтажа светодиодов со стороны печатных проводников. Номиналы токоограничительных резисторов R41-R47 выбраны так, чтобы ток протекающий через светодиоды симисторных оптронов U1.1-U7.1 был в пределах 15-16мА. Необязательно использовать мигающие светодиоды HL1 и HL9, но их свечение должно быть хорошо заметно, поэтому их можно заменить светодиодами непрерывного излучения красного цвета повышенной яркости, такими как АЛ307КМ или L1543SRC-Е .

Зарубежный диодный мост DF005M (VD1,VD2) можно заменить отечественным КЦ407А или любым с напряжением не менее 50В и током не менее 0,4А. Стабилитрон VD3 может быть любым маломощным, имеющим напряжение стабилизации 4,3…4,7 В.

Стабилизатор напряжения КР1158ЕН6А (DA1) может быть заменен на КР1158ЕН6Б . Микросхему счетверенного компаратора LM339N (DA2,DA3), можно заменить отечественным аналогом К1401СА1 . Микросхему КР1554ЛП5 (DD1-DD5), можно заменить аналогичной из серий КР1561 и КР561 или зарубежной 74AC86PC .

Cимисторные оптроны MOC3041 (U1-U7) можно заменить MOC3061 .

Подстроечные резисторы R14, R15 и R23 проволочные многооборотные СП5-2 или СП5-3 . Постоянные резисторы R16-R22 C2-23 с допуском не ниже 1%, остальные могут быть любыми с допуском 5%, имеющие мощность рассеяния не ниже указанной на схеме. Оксидные конденсаторы C1-C3, C5 могут быть любыми, с емкостью, указанной на схеме, и напряжением не ниже для них указанных. Остальные конденсаторы C4, C6-C8 - любые пленочные или керамические.

Импортные симисторные оптроны MOC3041 (U1-U7) выбраны потому, что они содержат встроенные контроллеры перехода напряжения через ноль. Это необходимо для синхронизации выключения одного мощного симистора и включения другого, чтобы предотвратить замыкания обмоток автотрансформатора.

Мощные симисторы VS1-VS7 также зарубежные BTA41-800B , так как отечественные той же мощности требуют слишком большой ток управления, который превышает предельно допустимый ток оптосимисторов 120мА. Все симисторы VS1-VS7 установлены на одном теплоотводе с площадью охлаждающей поверхности не менее 1600 см2.

Микросхему стабилизатора КР1158ЕН6А (DA1) необходимо установить на теплоотвод, изготовленный из отрезка аллюминиевой пластины или П-образного профиля с площадью поверхности не менее 15 см2.

Трансформатор T1 самодельный, рассчитанный на габаритную мощность 3 Вт, имеющий площадь сечения магнитопровода 1,87 см2. Его сетевая обмотка I, рассчитана на максимальное аварийное напряжение сети 380 В, содержит 8669 витков провода ПЭВ-2 диаметром 0,064 мм. Обмотки II и III содержат по 522 витков провода ПЭВ-2 диаметром 0,185 мм.

Вариант с двумя трансформаторами питания

При номинальном напряжении сети 220 В напряжение каждой выходной обмотки должно составлять 12 В. Вместо самодельного трансформатор T1 можно применить два трансформатора ТПК-2-2×12В , соединенных последовательно по способу, описанному в как показано на рис.

Файл печати устройства PechatStab-2.lay (вариант с двумя трансформаторами ТПК-2-2×12В ) выполнен с помощью программы Sprint Layout 4.0 , которая позволяет выводить рисунок на печать в зеркальном отображении и очень удобна для изготовления печатных плат при помощи лазерного принтера и утюга. Ее можно скачать здесь.

Силовой трансформатор

Трансформатор T2 на 6 кВт, также самодельный, намотанный на тороидальном магнитопроводе габаритной мощностью 3-4 кВт, способом, описанным в . Его обмотка содержит 455 витков провода ПЭВ-2.

Отводы 1,2,3 мотаются проводом диаметром 3 мм. Отводы 4,5,6,7 мотаются шиной сечением 18,0 мм2 (2мм на 9 мм). Такое сечение необходимо, для того чтобы автотрансформатор не грелся в процессе длительной эксплуатации.

Отводы сделаны от 203, 232, 266, 305, 348 и 398-го витка, считая от нижнего по схеме вывода. Напряжение сети подается на отвод 266-го витка.

Если мощность нагрузки не превышает 2,2 кВт, то автотрансформатор T2 может быть намотан на статоре электродвигателя мощностью 1,5 кВт проводом ПЭВ-2. Отводы 1,2,3 мотаются проводом диаметром 2 мм. Отводы 4,5,6,7 мотаются проводом диаметром 3 мм

Число витков обмотки следует пропорционально увеличить в 1,3 раза. Ток срабатывания выключателя-предохранителя QF1 должен быть снижен до 20 А. Перед нагрузкой желательно поставить дополнительный автомат на 10А

При изготовлении автотрансформатора, при неизвестном значении магнитной проницаемости Вмах сердечника, для того, что бы не ошибиться в выборе отношения витков на вольт, необходимо провести практическое исследование статора (см. раздел ниже).

В общем архиве есть программа для расчета отводов автотрансформатора по своим габаритным размерам статора при известном значении магнитной проницаемости Вмах сердечника.

Если мощность нагрузки не превышает 3 кВт, то автотрансформатор T2 может быть намотан на статоре электродвигателя мощностью 4 кВт проводом ПЭВ-2 диаметром 2,8 мм (сечение 6,1 мм2) Число витков обмотки следует пропорционально увеличить в 1,2 раз. Ток срабатывания выключателя-предохранителя QF1 должен быть снижен до 16 А. Можно применить симисторы VS1-VS7 BTA140-800, размещенные на теплоотводе площадью не менее 800 см2.

Настройка

Налаживание осуществляется с помощью ЛАТР -а и двух вольтметров. Необходимо установить пороги переключения нагрузки и убедиться в том, что выходное напряжение стабилизатора находится в допустимых пределах для питаемой аппаратуры.

Обозначим U1, U2, U3, U4, U5, U6, U7 - значения напряжения на движке подстроечного резистора R14, соответствующие напряжению сети 130, 150, 170, 190, 210, 230, 250, 270 В (пороги переключения и отключения нагрузки).

Вместо подстроечных резисторов R15 и R23 временно монтируют постоянные резисторы сопротивлением 10 кОм.

Далее стабилизатор без автотрансформатора T2 включают в сеть через ЛАТР . На выходе ЛАТР -а повышают напряжение до 250 В, затем движком подстроечного резистора R14 устанавливают напряжение U6 равное 3,5 В, измеряя его цифровым вольтметром. После этого понижают напряжение ЛАТР -а до 130 В и измеряют напряжение U1. Пусть, например, оно равно 1,6 В.

Вычисляют шаг изменения напряжения:

∆U=(U6 – U1)/6=(3,5-1,6)/6=0,3166 В , ток, текущий через делитель R15-R23

I=∆U/R16=0,3166/2=0,1583 мА

Вычисляют сопротивления резисторов R15 и R23:

R15= U1/I=1,6/0,1583=10,107 кОм, R23= (Uпит – U6 –∆U)/I=(6–3,5–0,3166)/0,1588=13,792 кОм , где Uпит - напряжение стабилизации микросхемы DA1. Расчет приближенный, так как в нем не учтено влияние резисторов R32-R39, однако его точность достаточна для практической настройки стабилизатора.

Программу для расчета R8,R16 и граничных напряжений переключения можно скачать во вложениях.

Далее устройство отключают от сети и с помощью цифрового вольтметра устанавливают сопротивления резисторов R15 и R23, равные вычисленным значениям и монтируют их на плату вместо постоянных резисторов, упомянутых выше. Снова включают стабилизатор и отслеживают переключение светодиодов, плавно увеличивая напряжения ЛАТР -а от минимального до максимального и обратно. Одновременное свечение двух и более светодиодов указывает на неисправность одной из микросхем DA2, DA3, DD1-DD5. Неисправная микросхема должна быть заменена, поэтому удобнее установить на плате не сами микросхемы, а панели для них.

Убедившись в исправности микросхем, подключают автотрансформатор T2 и нагрузку - лампу накаливания мощностью 100…200 Вт. Снова измеряют пороги переключения и напряжения U1-U7. Для проверки правильности расчетов, меняя ЛАТР -ом входное на Т1 необходимо убедиться в мигании светодиода HL1 при напряжении ниже 130 В, последовательном включении светодиодов HL2 - HL8 при пересечении порогов переключения, указанных выше, а также мигании HL9 при напряжении выше 270 в.

Если максимальное напряжение ЛАТР -а меньше 270 В, устанавливают на его выходе 250 В, вычисляют напряжение U7 по формуле: U7=U6+∆U=3,82 В. Перемещают движок R14 вверх, проверяют, что при напряжении U7 происходит отключение нагрузки, после чего возвращают движок R14 вниз, устанавливая прежнее значение U6, равное 3,5 В.

Завершить налаживание стабилизатора желательно его подключением к напряжению 380 В на несколько часов.

За время эксплуатации нескольких экземпляров стабилизаторов разной мощности (примерно полгода) не было сбоев и отказов в их работе. Не было неисправностей питаемой через них аппаратуры по причине нестабильного напряжения сети.

Литература

1. Коряков С. Стабилизатор сетевого напряжения с микроконтроллерным управлением. - Радио, 2002, №8, с. 26-29. 2. Копанев В. Защита трансформатора от повышенного напряжения сети. - Радио, 1997, №2 с.46. 3. Андреев В. Изготовление трансформаторов. - Радио, 2002, №7, с.58

4. http://rexmill.ucoz.ru/forum/50-152-1

Расчет автотрансформаторa

Вам удалось достать статор из двигателя, но Вы не знаете, из какого материала он выполнен. Вообще при расчете сердечников мощностью выше 1 кВт часто возникают проблемы с исходными данными. Можно легко избежать проблем, если провести исследования имеющегося у Вас сердечника. Сделать это очень просто.

Подготавливаем сердечник для намотки первичной обмотки: обрабатываем острые края, накладываем изолирующие прокладки (в моем случае на тороидальный сердечник я сделал накладки из картона). Теперь наматываем 50 витков провода диаметром 0.5-1 мм. Для измерений нам понадобится амперметр с пределом измерения примерно до 5 ампер, вольтметр переменного напряжения и ЛАТР .MS Excel

N/V= 50/((140-140*0.25) = 0,48 витков на вольт .

Число витков в отводах рассчитывается по средним напряжениям каждого из входных диапазонов контроллера и составит:

Отвод №1 – 128,5 В х 0,48 В = 62 Вит Отвод №2 – 147 В х 0,48 В = 71 Вит Отвод №3 – 168 В х 0,48 В = 81 Вит Отвод №4 – 192 В х 0,48 В = 92 Вит Отвод №5 – 220 В х 0,48 В = 106 Вит (с него же снимается напряжение на нагрузку) Отвод №6 – 251,5 В х 0,48 В = 121 Вит Отвод №7 – 287,5 В х 0,48 В = 138 Вит (полное количество витков автотрансформатора)

Вот и вся проблема!

Модернизация

Понравилось это.

gicco.ru


Смотрите также