Формула для конденсатора


Формулы конденсатора

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Для любого конденсатора справедлива формула:

   

где C – емкость конденсатора; q – величина заряда одной из обкладок конденсатора; – разность потенциалов между его обкладками.

Емкость конденсатора, между пластинами которого находится диэлектрик (C) (диэлектрическая проницаемость которого равна в раз больше, чем емкость такого же воздушного конденсатора ():

   

Для расчета емкости плоского конденсатора применяют формулу:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Емкость плоского конденсатора, содержащего N слоев диэлектрика (толщина i-го слоя равна , диэлектрическая проницаемость i-го слоя , определяется как:

   

Электрическая емкость цилиндрического конденсатора вычисляют как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Емкость сферического (шарового) конденсатора находят по формуле:

   

где – радиусы обкладок конденсатора.

Формулы для расчета емкости соединения конденсаторов

При параллельном соединении конденсаторов суммарная емкость батареи (C) равна сумме емкостей отдельных конденсаторов (), ее составляющих:

   

Электрическая емкость последовательного соединения конденсаторов может быть вычислена по формуле:

   

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи вычислим как:

   

Сопротивление конденсатора

При включении конденсатора в цепь с постоянным током сопротивление конденсатора считают бесконечно большим.

Если конденсатор включен в цепь переменного тока, то его сопротивление называют емкостным и вычисляют при помощи формулы:

   

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Формула энергии поля конденсатора

   

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

   

Примеры решения задач по теме «Конденсатор»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

формулы для конденсаторов

Содержание:

Одним из важных элементов электрической цепи является конденсатор, формулы для которого позволяют рассчитать и подобрать наиболее подходящий вариант. Основная функция данного устройства заключается в накоплении определенного количества электроэнергии. Простейшая система включает в себя два электрода или обкладки, разделенные между собой диэлектриком.

В чем измеряется емкость конденсатора

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица – фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме. Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q – заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов емкости плоского конденсатора используется формула: в которой ε0 = 8,854187817 х 10-12 ф/м представляет собой постоянную величину. Прочие величины: ε – является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S – означает площадь обкладки, а d – зазор между обкладками.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как энергия заряженного конденсатора. После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

В процессе зарядки происходит расходование энергии внешнего источника для разделения зарядов с положительным и отрицательным значением, которые, затем располагаются на обкладках конденсатора. Поэтому в соответствии с законом сохранения энергии, она не исчезает бесследно, а остается внутри конденсатора в виде электрического поля, сосредоточенного между пластинами. Разноименные заряды образуют взаимодействие и последующее притяжение обкладок между собой.

Каждая пластина конденсатора под действием заряда создает напряженность электрического поля, равную Е/2. Общее поле будет складываться из обоих полей, возникающих в каждой обкладке с одинаковыми зарядами, имеющими противоположные значения.

Таким образом, энергия конденсатора выражается формулой: W=q(E/2)d. В свою очередь, напряжение выражается с помощью понятий напряженности и расстояния и представляется в виде формулы U=Ed. Это значение, подставленное в первую формулу, отображает энергию конденсатора в таком виде: W=qU/2. Для получения окончательного результата необходимо использовать определение емкости: C=q/U, и в конце концов энергия заряженного конденсатора будет выглядеть следующим образом: Wэл = CU2/2.

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: Uc = E.

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Течение зарядного тока в цепи происходит практически за тысячные доли секунды, до того момента, пока напряжение конденсатора не станет равным электродвижущей силе генератора. Напряжение увеличивается плавно, а потом постепенно замедляется. Далее значение напряжения конденсатора будет постоянным. Во время зарядки по цепи течет зарядный ток. В самом начале он достигает максимальной величины, так как напряжение конденсатора имеет нулевое значение. Согласно закона Ома Iзар = Е/Ri, поскольку к сопротивлению Ri приложена вся ЭДС генератора.

Формула тока утечки конденсатора

Ток утечки конденсатора вполне можно сравнить с воздействием подключенного к нему резистора с каким-либо сопротивлением R. Ток утечки тесно связан с типом конденсатора и качеством используемого диэлектрика. Кроме того, важным фактором становится конструкция корпуса и степень его загрязненности.

Некоторые конденсаторы имеют негерметичный корпус, что приводит к проникновению влаги из воздуха и возрастанию тока утечки. В первую очередь это касается устройств, где в качестве диэлектрика использована промасленная бумага. Значительные токи утечки возникают из-за снижения электрического сопротивления изоляции. В результате нарушается основная функция конденсатора – способность получать и сохранять заряд электрического тока.

Основная формула для расчета выглядит следующим образом: Iут = U/Rd, где Iут, – это ток утечки, U – напряжение, прилагаемое к конденсатору, а Rd – сопротивление изоляции.

electric-220.ru

Формула емкости конденсатора, С

Если q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками, то величина C, равная:

   

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в раз больше, чем воздушного ():

   

где – диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

   

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

   

где – радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Конденсатор формулы. Конденсаторы

ОПРЕДЕЛЕНИЕ

Емкость - один из основных параметров характеризующих конденсатор.

Если q - величина заряда одной из обкладок конденсатора, а - разность потенциалов между его обкладками, то величина C, равная:

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в раз больше, чем воздушного ():

где - диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

где - электрическая постоянная; S - площадь каждой (или наименьшей) пластины; d - расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

где l - высота цилиндров; - радиус внешней обкладки; - радиус внутренней обкладки.

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где - радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

ПРИМЕР 1

Задание Какова электрическая емкость плоского двуслойного конденсатора? Один из слоев диэлектрика - фарфор с толщиной =2мм; второй слой - эбонит ( мм). Площадь пластин конденсатора равна 0,01 м 2 .
Решение Для решения этой задачи проще всего применить формулу для расчета емкости слоистого плоского конденсатора, учитывая, что мы имеем всего два слоя:

Конденсатор - это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины . Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик. Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок.

Свойства

Емкость . Это основное свойство конденсатора. Измеряется в Фарадах и вычисляется по следующей формуле (для плоского конденсатора):

где С, q, U - это соответственно емкость, заряд, напряжение между обкладками, S –площадь обкладок, d – расстояние между ними, - диэлектрическая проницаемость, - диэлектрическая постоянная, равная 8,854*10^-12 Ф/м..

Полярность конденсатора ;

Номинальное напряжение ;

Удельная емкость и другие .

Величина емкости конденсатора зависит от

Площадь пластин . Это понятно из формулы: емкость прямо пропорциональна заряду. Естественно, увеличив площадь обкладок, получаем большее количество заряда.

Расстояния между обкладками . Чем они ближе расположены, тем больше напряженность получаемого электрического поля.

Устройство конденсатора

Наиболее распространенные конденсаторы - это плоские и цилиндрические. Плоские состоят из пластин, удаленных друг от друга на небольшое расстояние. Цилиндрические, собираются при помощи цилиндров равной длины и разного диаметра. Все конденсаторы, в принципе, устроены одинаково. Разница, в основном, в том, какой материал используется в качестве диэлектрика. По типу диэлектрической среды и классифицируют конденсаторы, которые бывают жидкими, вакуумными, твердыми, воздушными.

Как заряжается и разряжается конденсатор?

При подключении к источнику постоянного тока, обкладки конденсатора заряжаются, одна приобретает положительный потенциал, а другая отрицательный. Между обкладками противоположные по знаку, но равные по значению, электрические заряды создают электрическое поле. Когда напряжения станут одинаковыми и на обкладках, и на источнике подаваемого тока, движение электронов прекратится и зарядка конденсатора закончится. Определенный промежуток времени конденсатор сохраняет заряды и выполняет функции автономного источника электроэнергии. В таком состоянии он может находиться достаточно долгое время. Если вместо источника, включить в цепь резистор, то конденсатор разрядится на него.

Процессы, происходящие в конденсаторе

При подключении прибора к переменному или постоянному току в нем будут происходить разные процессы. Постоянный ток не пойдет по цепи с конденсатором. Так как между его обкладками находится диэлектрик, цепь фактически разомкнута.

Переменный ток , за счет того что периодически меняет направление, может проходить через конденсатор. При этом происходит периодический разряд и заряд конденсатора. На протяжении первой четверти периода заряд идет до максимума, в нем запасается электроэнергия, в следующую четверть конденсатор разряжается и электрическая энергия возвращается обратно в сеть. В цепи переменного тока, конденсатор обладает кроме активного сопротивления, еще и реактивной составляющей. Кроме того, в конденсаторе, ток опережает напряжение на 90 градусов, это важно учитывать, при построении векторных диаграмм .

Применение

Конденсаторы используются в радиотехнике, электронике, автоматике. Конденсатор –незаменимый элемент, который применяется во многих отраслях электротехники, на предприятиях, в научных разработках. Как пример, при необходимости, выступает в качестве разделителя токов: переменного и постоянного, применяется в конденсаторных установках, если необходимо компенсировать реактивную мощность , применяется как накопитель электричества в электросетях.

Состоит из двух пластин (или обкладок), находящихся одна перед другой и сделанных из проводящего материала. Между пластинами находится изолирующий материал, называемый диэлектриком (рис. 4.1). Простейшими диэлектриками являются воздух, бумага, слюда и т. д.

Рис. 4.1

Зарядка конденсатора

Основным свойством конденсатора является его способность запасать электрическую энергию в виде электрического заряда. На рис. 4.2(а) изображена схема, в которой конденсатор соединяется через ключ с источником питания. Когда ключ замкнут (рис. 4.2(б)), положительный полюс источника «откачивает» электроны с обкладки А, и она приобретает положительный заряд. Отрицательный полюс источника питания тем временем «поставляет» электроны на обкладку В, в результате чего она приобретает отрицательный заряд, по абсолютной величине равный положительному заряду обкладки А. Такой поток электронов называется током заряда. Он продолжает течь до тех пор, пока напряжение на конденсаторе не сравняется с ЭДС источника питания. В этом случае говорят, что конденсатор полностью заряжен. Электрический заряд обозначается буквой Q, а его величина измеряется в кулонах (Кл).

Рис. 4.2.

Когда конденсатор заряжен, между его обкладками возникает разность потенциалов, а следовательно, и электрическое поле. Если в момент, когда конденсатор уже зарядился, разомкнуть ключ (рис. 4.2(в)), конденсатор будет хранить заряд. В этом случае внутри диэлектрика между обкладками возникает электрическое поле. При разряде конденсатора через сопротивление нагрузки (рис. 4.2(г)) электрическое ноле исчезает.

Емкость конденсатора

Способность конденсатора накапливать электрический заряд называется емкостью, а величина этой емкости обозначается буквой С и измеряется в фарадах (Ф). Фарада - очень большая единица емкости, и поэтому она практически не используется. Чаще используются дробные единицы:

1 микрофарада (мкФ) = Ф = 10 -6 Ф,

1 пикофарада (пФ) = мкФ = 10 -6 мкФ = 10 -12 Ф.

Емкость конденсатора возрастает с увеличением площади обкладок и убывает с увеличением расстояния между ними. Например, при возрастании площади обкладок вдвое емкость также увеличивается в два раза. Если же увеличить вдвое расстояние между обкладками, емкость станет вдвое меньше.

Связь заряда, емкости и напряжения

Если конденсатор заряжен до разности потенциалов V , его заряд определяется формулой Q=CV

где С выражается в фарадах, V – в вольтах, а Q – в кулонах. Преобразовав эту формулу, получим:

Энергия заряженного конденсатора

Энергия W, запасенная конденсатором, определяется формулой

где W выражается в джоулях, С – в фарадах, а V - в вольтах.

Параллельное и последовательное соединение конденсаторов

Если два конденсатора, С1 и С2, соединены параллельно (рис. 4.3(а)), результирующая емкость СТ такого соединения равна сумме емкостей этих конденсаторов:

Если конденсаторы соединены последовательно (рис. 4.3(б)), результирующая емкость СТ оказывается меньше емкости любого из конденсаторов я выражается формулой

Например, если С1 = С2, то результирующая емкость СТ последовательного соединения равна половине емкости любого из конденсаторов:

Напряжение на последовательно соединенных конденсаторах

На схеме, показанной на рис. 4.4, конденсаторы С1 и С2 соединены последовательно и подключены к источнику постоянного напряжения VТ. Полное напряжение VТ будет поделено между С1 и С2 таким образом, что на конденсаторе меньшей емкости установится большее напряжение,

Рис. 4.3. Параллельное (а) и последовательное (б) соединение конденсаторов.

Рис. 4.4. Напряжение на конденсаторах при их последовательном соединении

и наоборот.

Сумма V1 (напряжения на С1) и V2 (напряжения на С2) всегда равна полному напряжению VТ. В общем случае, когда несколько конденсаторов, соединенных последовательно, подключено к источнику постоянного тока, напряжение на каждом из конденсаторов обратно пропорционально его емкости. При последовательном соединении двух конденсаторов напряжения на С1 и С2 соответственно равны

Пример 1

Определим результирующую емкость цепи, изображенной на рис. 4.5. Результирующая емкость параллельного соединения равна

С2 + С3 = 10 + 20 = 30 пФ

Поскольку емкость С1 также равна 30 пФ, то результирующая емкость всей цепи равна ½*30 = 15 пФ.

Рис. 4.6. Рис. 4.7.

Пример 2

На рис. 4.6 напряжение на конденсаторе С1 равно

откуда напряжение на С2 равно 30 – 20 = 10 В.

Рабочее напряжение

Любой конденсатор характеризуется некоторым максимальным напряжением, при превышении которого наступает пробой диэлектрика. Это напряжение называется рабочим, или номинальным, напряжением конденсатора, и подаваемое на конденсатор напряжение ни в коем случае не должно его превышать. При использовании конденсатора в цепях переменного тока амплитудное значение напряжения в цепи также не должно превышать рабочего напряжения конденсатора. Рабочим напряжением для батареи конденсаторов, соединенных параллельно, является наименьшее из рабочих напряжений конденсаторов, входящих в схему, Например, рабочее напряжение для цепи, изображенной на рис. 4.7, равно 25 В. Для конденсаторов, соединенных последовательно, рабочее напряжение подбирать труднее. Рассмотрим схему на рис. 4.8. Конденсатор С1 (1 мкФ, рабочее напряжение Vраб = 25 В) соединен последовательно с конденсатором С2 (10 мкФ, Vраб = 10 В). Поскольку на конденсаторе С1, обладающем меньшей емкостью, установится большее напряжение, чем на С2, то при расчетах следует прежде всего иметь в виду рабочее напряжение конденсатора С1, равное 25 В. Таким образом, V1 = 25 В. соотношения V1/ V2 = С1/ С2 следует, что

Поскольку рабочее напряжение конденсатора С2 выше, чем V2, рабочее напряжение данной батареи конденсаторов равно 25 + 2,5 = 27,5 В. Следует заметить, что если бы рабочее напряжение конденсатора было равно, например, 2 В, как показано на рис. 4.9, то он зарядился бы

Рис. 4.8. Рис. 4.9.

Рис. 4.10. Рис. 4.11 . Катушка индуктивности

до уровня рабочего напряжения прежде, чем напряжение на конденсаторе С1 достигло бы 25 В. Вот расчет для этого случая: V2 = 2 В, тогда.

Следовательно, рабочее напряжение такой батареи будет составлять 20 + 2 = 22 В.

Пример 3

Конденсаторы С1 и С2, изображенные на рис. 4.10, имеют каждый рабочее напряжение 60 В. Какое максимальное напряжение может быть приложено к этой схеме?

Решение Поскольку на конденсаторе С1 установится более высокое напряжение, чем на конденсаторе С2, то напряжение на нем раньше достигнет уровня рабочего напряжения. При V1 = 60 В

Максимальное напряжение, которое может быть подано на данную схему, составляет 60 + 20 = 80 В.

В этом видео рассказывается о понятии конденсатора:

В электрической цепи каждого прибора есть такой элемент, как конденсатор. Это он служит для наполнения энергией, которая нужна для правильной и бесперебойной работы оборудования.

Что такое конденсатор

Каждый конденсатор - это устройство, обладающее набором технических параметров, которые стоит рассмотреть детально.

Конденсаторы можно встретить во многих отраслях электротехники. Их непосредственная область применения:

Емкость конденсатора

Для каждого конденсатора главный параметр - это его емкость. У каждого устройства она своя и измеряется она в Фарадах. В основе электроники и радиотехники используют конденсаторы с миллионной долей Фарад. Чтобы узнать номинальную емкость устройства, достаточно просмотреть его корпус, на котором имеется вся информация. Показания емкости могут изменяться из-за следующих параметров:

Наряду с номинальной емкостью существует еще и реальная. Ее значение намного ниже предыдущей. По реальной емкости можно определить основные электрические параметры. Емкость определяют от заряда обкладки и ее напряжения. Максимальная емкость может достигать нескольких десятков Фарад. Конденсатор может также быть охарактеризован удельной емкостью. Это отношение емкости и объема диэлектрика. Маленькая толщина диэлектрика обеспечивает большое значение удельной емкости. Каждый конденсатор может изменять свою емкость, и делятся они на следующие типы:

Напряжение конденсатора

Напряжение считается еще одним из важных параметров. Чтобы конденсатор выполнял свои функции в полном объеме, нужно знать точное показание напряжения. Оно указывается на корпусе устройства. Номинальное напряжение напрямую зависит от сложности конструкции конденсатора и основных свойств материалов, используемых при его изготовлении. Напряжение, подаваемое на конденсатор, должно полностью совпадать с номинальным. Многие устройства при работе нагреваются, в таком случае напряжение понижается. Часто из-за большой разницы в напряжениях конденсатор может перегореть или взорваться. Также это происходит из-за утечки или повышения сопротивления. Для безопасной работы конденсатора его оснащают защитным клапаном и насечкой на корпусе. Как только происходит увеличение давления, клапан автоматически открывается, и по намеченной насечке корпус ломается. Из конденсатора в таком случае электролит выходит в виде газа и не происходит никакого взрыва.

Допуски конденсаторов

Самый простой конденсатор - это два электрода, сделанные в форме пластин, которые разделяются тонкими изоляторами. Каждое устройство имеет отклонение, которое допустимо при его работе. Эту величину также можно узнать по маркировке устройства. Его допуск измеряется и указывается в процентном соотношении и может лежать в пределах от 20 до 30%. Для электротехники, которая должна работать с высокой точностью, можно использовать конденсаторы с маленьким значением допуска, не больше 1%.Приведенные параметры являются основными для работы конденсатора. Зная их значения, можно использовать конденсаторы для самостоятельной сборки аппаратов или машин.

Виды конденсаторов

Существует несколько основных видов конденсаторов, которые используют в различной технике. Итак, стоит рассмотреть каждый вид, его описания и свойства:

У каждого конденсатора свое предназначение, поэтому их дополнительно классифицируют на общие и специальные. Общие конденсаторы применяют в любых видах и классах аппаратуры. В основном это низковольтные устройства. Специальные конденсаторы - это все остальные виды устройств, которые являются высоковольтными, импульсными, пусковыми и другими различными видами.

Особенности плоского конденсатора

Так как конденсатор - это устройство, предназначенное для накопления напряжения и его дальнейшего распределения, поэтому нужно выбирать его с хорошей электроемкостью и «пробивным» напряжением. Одним из таких является плоский конденсатор. Выпускается он в виде двух тонких пластин определенной площади, которые расположены на близком расстоянии друг от друга. Плоский конденсатор обладает двумя зарядами: положительным и отрицательным.

Пластины плоского конденсатора между собой имеют однородное электрическое поле. Этот тип устройства не вступает во взаимодействие с другими приборами. Пластина конденсатора способна усиливать электрическое поле.

Правильный заряд конденсатора

Он является хранилищем для электрических зарядов, которые должны постоянно заряжаться. Заряд конденсатора происходит за счет подключения его к сети. Чтобы зарядить устройство, нужно правильно подсоединить его. Для этого берут цепь, которая состоит из разряженного конденсатора с емкостью, резистором, и подключают к питанию с постоянным напряжением.

Разряжается конденсатор по следующему типу: замыкают ключ, и пластины его соединяются между собой. В это время конденсатор разряжается, и между его пластинами исчезает электрическое поле. Если конденсатор разряжается через провода, то на это уйдет много времени, так как в них накапливается много энергии.

Зачем нужен контур конденсатора

В контурах находятся конденсаторы, которые изготавливаются из пары пластин. Для их изготовления берут алюминий или латунь. Хорошая работа радиотехники зависит от правильной настройки контуров. Самая обычная цепь контура состоит из одной катушки и конденсатора, которые между собой замкнуты в электрическую цепь. Есть условия, которые влияют на появление колебаний, поэтому чаще всего контур конденсатора называют колебательным.

Заключение

Конденсатор - это пассивное устройство в электрической цепи, которое используется в качестве емкости для хранения электричества. Чтобы средство для накопления энергии в электрических цепях, именуемое конденсатором, проработало долго, нужно следовать указанным условиям, которые прописаны на корпусе устройства. Область применения широкая. Используют конденсаторы в радиоэлектронике и различной аппаратуре. Подразделяются устройства на много разных видов и выпускаются многообразной конструкцией. Конденсаторы могут соединяться двумя видами: параллельным и последовательным. Также на корпусе устройства есть информация о емкости, напряжении, допуске и его типе. Стоит запомнить, что при подключении конденсатора стоит соблюдать полярность. В противном случае устройство быстро выйдет из строя.

В первом приближении конденсаторы (рис. 1.8) - это частотно-зависимые резисторы.

Они позволяют создавать, например, частотно-зависимые делители напряжения. Для решения некоторых задач (шунтирование, связывание контуров) больших знаний о конденсате и не требуется, другие задачи (построение фильтров, резонансных схем, накопление энергии) требуют более глубоких знаний. Например, конденсаторы не рассеивают энергию, хотя через них и протекает ток,- дело в том, что ток и напряжение на конденсаторе смещены друг относительно друга по фазе на 90º.

Конденсатор - это устройство, имеющее два вывода и обладающее следующим свойством:

Конденсатор, имеющий емкость С фарад, к которому приложено напряжение U вольт, накапливает заряд Q кулон.

Продифференцировав выражение для- Q, получим

(6)

Итак, конденсатор - это более сложный элемент, чем резистор; ток пропорционален не просто напряжению, а скорости изменения напряжения. Если напряжение на конденсаторе, имеющем емкость 1 Ф, изменится на 1 В за 1 с, то получим ток 1 А. И наоборот, протекание тока 1 А через конденсатор емкостью 1 Ф вызывает изменение напряжения на 1 В за 1 с. Емкость, равная одной фараде, очень велика, и поэтому чаще имеют дело с микрофарадами (мкФ) или пикофарадам (пФ). (Для того чтобы сбить с толку непосвященных, на принципиальных схемах иногда опускают обозначения единиц измерения. Их приходится угадывать из контекста.) Например, если подать ток 1 мА на конденсатор емкостью 1 мкФ, то напряжение за 1 с возрастет на 1000 В. Импульс тока продолжительностью 10 мс вызовет увеличение напряжения на конденсаторе на 10 В (рис. 1.9).

Промышленность выпускает конденсаторы разнообразных форм и размеров; через некоторое время вы познакомитесь с наиболее распространенными представителями этого обширного семейства. Простейший конденсатор состоит из двух проводников, расположенных на небольшом расстоянии друг от друга (но не соприкасающихся между собой); настоящие простейшие конденсаторы имеют именно такую конструкцию. Чтобы получить большую емкость, нужны большая площадь и меньший зазор между проводниками; обычно для этого один из проводников покрывают тонким слоем изолирующего материала (называемого диэлектриком), для таких конденсаторов используют, например, алитированную (покрытую алюминием) майларовую пленку. Широкое распространение получили следующие типы конденсаторов: керамические, электролитические (изготовленные из металлической фольги с оксидной пленкой в качестве изолятора), слюдяные (изготовленные из металлизированной слюды). Каждому типу конденсаторов присущи свои качества. В общем, можно сказать, что для некритичных схем подходят керамические и майларовые конденсаторы; в схемах, где требуется большая емкость, применяются танталовые конденсаторы, а для фильтрации в источниках питания используют электролитические конденсаторы.

Параллельное и последовательное соединение конденсаторов

Емкость нескольких параллельно соединенных конденсаторов равна сумме их емкостей. Нетрудно в этом убедиться: приложим напряжение к параллельному соединению, тогда

(8)

Для последовательного соединения конденсаторов имеем такое же выражение, как для параллельного соединения резисторов:

(9)

В частном случае для двух конденсаторов

(10)

§ 1.5. Изменения во времени напряжения и тока

RC-цепи

Для анализа цепей переменного тока (или в общем случае схем, работающих с изменяющимися напряжениями и токами) можно использовать характеристики двух типов. Во-первых, можно рассматривать изменения напряжения U и тока I во времени, а во-вторых, - изменение амплитуды при изменении частоты сигнала. И те и другие характеристики имеют свои преимущества, и в каждом практическом случае приходится выбирать наиболее подходящие. Мы начнем изучение цепей переменного тока с временных зависимостей, а затем перейдем к частотным характеристикам.

Каковы же свойства схем, в состав которых входят конденсаторы? Для того чтобы ответить наэтот вопрос, рассмотрим простейшую RC-цепь (рис. 1.10).

Воспользуемся полученным ранее выражением для емкости:

Это выражение представляет собой дифференциальное уравнение, решение которого имеет вид

(12)

Отсюда следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на рис. 1.11.

Постоянная времени

Произведение RC называют постоянной времени цепи. Если R измерять в омах, а С - в фарадах, то произведение RCбудет измеряться в секундах. Для конденсатора емкостью 1 мкФ, подключенного к резистору сопротивлением 1 кОм, постоянная времени составляет 1 мс; если конденсатор был предварительно заряжен и напряжение на нем составляет 1 В, то при подключении резистора в цепи появится ток, равный 1 мА. На рис. 1.12 показана несколько иная схема.

Рис. 1.12. Рис. 1.13.

В момент времени t=0 схема подключается к батарее. Уравнение, описывающее работу такой схемы, выглядит следующим образом:

и имеет решение

(14)

Не пугайтесь, если не поняли, как выполнено математическое преобразование. Важно запомнить полученный результат. В дальнейшем мы будем многократно его использовать, не прибегая к математическим выкладкам. Постоянная величина А определяется из начальных условий (рис. 1.13): U=0 при t=0, откуда А=-U вх и U=U вх (1 - e - t / RC).

Установление равновесия

При условии t>>RC напряжение U достигает значения U вх. (Советуем запомнить хорошее практическое правило, называемое правилом пяти RC. Оно гласит: за время, равное пяти постоянным времени, конденсатор заряжается или разряжается на 99%). Если затем изменить входное напряжение U вх (сделать его равным, например, нулю), то напряжение на конденсаторе Uбудет убывать, стремясь к новому значению по экспоненциальному закону e - t / RC .

Дифференцирующие цепи

Рассмотрим схему, изображенную на рис. 1.14. Напряжение на конденсаторе С равно U вх -U, поэтому

Если резистор и конденсатор выбрать так, чтобы сопротивление R и емкость С были достаточно малыми и выполнялось условие dU/dt

lightinfom.ru

Электрическая емкость. Конденсаторы. Емкость конденсатора.

Электрическая емкость. Конденсаторы.

Емкость уединенного проводника.

Уединенным будем называть проводник, размеры которого много меньше расстояний до окружающих тел. Пусть это будет шар радиусом r. Если потенциал на бесконечности принять за 0, то потенциал заряженного уединенного шара равен:  , где e - диэлектрическая проницаемость окружающей среды.  Следовательно: 

эта величина не зависит ни от заряда, ни от потенциала и определяется только размерами шара (радиусом) и диэлектрической проницаемостью среды. Этот вывод справедлив для проводника любой формы.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу: .

Емкость определяется геометрической формой, размерами проводника и свойствами среды (от материала проводника не зависит). Чем больше емкость проводника, тем меньше меняется потенциал при изменении заряда.

Емкость шара в СИ:

  -

Единицы емкости.

Емкостью 1Ф (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.

Емкостью 1Ф  обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.

Емкость Земли  700 мкФ

Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.

1 мкФ=10-6Ф

1нФ=10-9Ф

1пФ=10-12Ф

Конденсаторы (condensare - сгущение) .

Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы - лейденская банка (Мушенбрук, сер. XVII в.).

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз.  обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

На рисунке - плоский и сферический конденсаторы. Поле плоского конденсатора почти все сосредоточено внутри (у идеального - все). Усферического - все поле сосредоточено между обкладками.

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: .

При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды - конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними.

Емкость плоского конденсатора.

, т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

Емкость сферического конденсатора .

Если зазор между обкладками мал по сравнению с радиусами, то формула переходит в формулу емкости плоского конденсатора.

Виды конденсаторов

При подключении электролитического конденсатора необходимо соблюдать полярность.

Назначение конденсаторов

  1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.
  2. Не пропускать постоянный ток.
  3. В радиотехнике: колебательный контур, выпрямитель.
  4. Фотовспышка.

www.eduspb.com

Формула электроемкости конденсатора

Обкладки должны иметь такую форму и быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально сосредоточено в ограниченной области пространства, между обкладками.

Назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.

Основной характеристикой конденсатора является электрическая емкость (C). Электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:

   

q – величина заряда на обкладке; – разность потенциалов между обкладками.

Электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. Если пространство между обкладками одного конденсатора заполнено диэлектриком с проницаемостью равной , а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (C) в раз больше, чем емкость воздушного конденсатора ():

   

Формула электроемкости основных типов конденсаторов

При расчете электроемкости плоского конденсатора нарушением однородности поля около краёв обкладок обычно пренебрегают. Это становится возможным, если расстояние между пластинами существенно меньше, чем линейные размеры обкладок. В таком случае электрическую емкость плоского конденсатора вычисляют при помощи формулы:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Если плоский конденсатор между обкладками имеет N слоев диэлектрика, при этом толщина каждого слоя равна , а диэлектрическая проницаемость , то его электрическую емкость рассчитывают при помощи формулы:

   

Цилиндрический конденсатор составляют две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполнено диэлектриком. При этом емкость цилиндрического конденсатора находят как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

У сферического конденсатора обкладками служат две концентрические сферические проводящие поверхности, пространство обкладками заполняет диэлектрик. Емкость сферического конденсатора вычисляют как:

   

где – радиусы обкладок конденсатора. Если , то можно считать, что , тогда, мы имеем:

   

так как – площадь поверхности сферы, и если обозначить , то получим формулу для емкости плоского конденсатора (3). Если расстояние между обкладками сферического и цилиндрического конденсаторов малы (в сравнении с их радиусами), то в приближенных расчетах используют формулу емкости для плоского конденсатора.

Электрическую емкость для линии из двух проводов находят как:

   

где d – расстояние между осями проводов; R – радиус проводов; l – длина линии.

Формулы для вычисления электрической емкости соединений конденсаторов

Если конденсаторы соединены параллельно, то суммарная емкость батареи (C) находится как сумма емкостей отдельных конденсаторов ():

   

При последовательном соединении конденсаторов емкость батареи вычисляют как:

   

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи найдем как:

   

Сопротивление конденсатора

Если конденсатор включен в цепь с постоянного тока, то сопротивление конденсатора можно считать бесконечно большим.

При включении конденсатора в цепь переменного тока, его сопротивление носит название емкостного, и вычисляют его с помощью формулы:

   

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Энергия поля конденсатора

Электрическое поле локализованное между пластинами конденсатора обладает энергией, которую можно вычислить при помощи формулы:

   

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

   

Примеры решения задач по теме «Электроемкость конденсатора»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Ёмкость плоского конденсатора.

Плоский конденсатор состоит из двух параллельных пластин, разделённых небольшим зазором шириной , заполненным однородным диэлектриком.

Нам известно, что поле между двумя разноимённо заряженными пластинами с одинаковой по величине поверхностной плотностью равно, где,S– площадь каждой пластины. Напряжение между обкладками:

.

Используя определение емкости конденсатора, получаем:

Отметим, что полученная формула является приближенной, так как выведена без учета искажения поля у краев пластин. Расчет по этой формуле дает завышенное значение ёмкости и тем точнее, чем меньше зазор по сравнению с линейными размерами пластин.

Ёмкость сферического конденсатора.

Сферический конденсатор представляет собой систему двух концентрических сфер с радиусами и. Электрическое поле между обкладками сферического конденсатора согласно теореме Гаусса определяется зарядом внутренней сферы. Напряжение между обкладками равно:

.

Для ёмкости сферического конденсатора получаем:

.

Это формула точная.

Если , полученная формула переходит в выражение для ёмкости плоского конденсатора.

Ёмкость цилиндрического конденсатора.

Цилиндрический конденсатор составляет систему двух коаксиальных цилиндров с радиусами и, длиной.

Рассуждая аналогично выводу ёмкости сферического конденсатора, получаем:

..

Полученная формула является приближенной и при малом зазоре переходит в формулу емкости плоского конденсатора.

Соединение конденсаторов.

В практике для получения необходимых значений емкости используют соединения конденсаторов: а) последовательное, б) параллельное, в) смешанное (см. рисунок).

Ёмкость последовательного соединения конденсаторов.

Заряды последовательно соединенных конденсаторов равны , а напряжение на батарее. Из определения емкости следует:

или .

Если , то(ёмкость последовательного соединения меньше наименьшей ёмкости в последовательном соединении).

Для последовательно соединенных конденсаторов емкость вычисляется по формуле:

.

В случае одинаковых конденсаторов: .

Ёмкость параллельного соединения конденсаторов.

Заряд батареи равен сумме зарядов:

,

а напряжение . По определению емкости получаем:

.

Для параллельно соединенных конденсаторов:.

В случае одинаковых конденсаторов: .

Пример.

Оценить емкость батареи (см. рисунок).

.

Ответ:.

Используя свойство бесконечности можно представить цепь в виде соединения (см. рисунок).

Для расчета ёмкости батареи получаем:

,

.

Откуда: , так как, то.

Лекция 7.

Диэлектрики в электрическом поле.

Диэлектриками (изоляторами) называют вещества, не проводящие постоянного электрического тока. Это означает, что в диэлектриках отсутствуют «свободные» заряды, способные перемещаться на значительные расстояния.

Диэлектрики состоят либо из нейтральных молекул, либо из ионов, находящихся в узлах кристаллической решетки. Сами же молекулы могут быть полярнымиинеполярными.Полярные молекулы обладают дипольным моментом, у неполярных молекул дипольный момент равен нулю.

Поляризация.

В электрическом поле диэлектрики поляризуются. Это явление связано с появлением в объеме и на поверхности диэлектрика «связанных» зарядов. При этом конечный объем диэлектрика приобретает дипольный момент. Механизм поляризации связан с конкретным строением диэлектрика. Если диэлектрик состоит из неполярных молекул, то в пределах каждой молекулы происходит смещение зарядов – положительных по полю, отрицательных против поля, т.е. молекулы, приобретают дипольный момент. У диэлектрика с полярными молекулами в отсутствии внешнего электрического поля их дипольные моменты ориентированы хаотично.

Под действием электрического поля диполи ориентируются преимущественно в направлении поля. Рассмотрим подробнее этот механизм (см. рисунок). Пара силисоздает вращательный момент равный, где- дипольный момент молекулы. Этот момент стремится ориентировать диполь вдоль поля. В ионных кристаллах под действием электрического поля все положительные ионы смещаются по полю, отрицательные – против поля. Отметим, что смещение зарядов очень малы даже по сравнению с размерами молекул. Это связано с тем, что напряженность внешнего электрического поля обычно много меньше напряженности внутренних электрических полей в молекулах.

Отметим, что существуют диэлектрики, поляризованные даже при отсутствии внешнего поля (электреты, сегнетоэлектрики). Мы остановимся на рассмотрении только однородных диэлектриков, в которых отсутствует остаточная поляризация, а объемный и «связанный» заряд всегда равен нулю .

studfiles.net


Смотрите также